Generalized conditional symmetries and exact solutions of non-integrable equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 2, pp. 263-277 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We introduce the concept of a generalized conditional symmetry. This concept provides an algorithm for constructing physically important exact solutions of non-integrable equations. Examples include 2-shock and 2-soliton solutions. The existence of such exact solutions for non-integrable equations can be traced back to the relation of these equations with integrable ones. In this sense these exact solutions are remnants of integrability.
@article{TMF_1994_99_2_a12,
     author = {A. S. Fokas and Q. M. Liu},
     title = {Generalized conditional symmetries and exact solutions of non-integrable equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {263--277},
     year = {1994},
     volume = {99},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TMF_1994_99_2_a12/}
}
TY  - JOUR
AU  - A. S. Fokas
AU  - Q. M. Liu
TI  - Generalized conditional symmetries and exact solutions of non-integrable equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1994
SP  - 263
EP  - 277
VL  - 99
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1994_99_2_a12/
LA  - en
ID  - TMF_1994_99_2_a12
ER  - 
%0 Journal Article
%A A. S. Fokas
%A Q. M. Liu
%T Generalized conditional symmetries and exact solutions of non-integrable equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1994
%P 263-277
%V 99
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1994_99_2_a12/
%G en
%F TMF_1994_99_2_a12
A. S. Fokas; Q. M. Liu. Generalized conditional symmetries and exact solutions of non-integrable equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 2, pp. 263-277. http://geodesic.mathdoc.fr/item/TMF_1994_99_2_a12/

[1] M. J. Ablowitz, A. Zeppetella, Bull. Math. Biol., 41 (1979), 835 | DOI | MR | Zbl

[2] R. Fitzhugh, Biophys J., 1 (1961), 445 ; J. S. Nagumo, S. Arimoto, S. Yoshizawa, Proc. IRE, 50 (1962), 2061 ; A. Kolmogorov, I. Petrovsky, N. Piscounov, Bull. Univ. Etat. Moscou, A1 (1937), 1; A. C. Newell, J. A. Whitehead, J. Fluid Mech., 38 (1969), 239 | DOI | DOI | DOI | MR

[3] J. D. Cole, Quart. Appl. Math., 9 (1951), 225 ; E. Hopf, Comm. Pure Appl.Math., 3 (1950), 201 | DOI | MR | Zbl | DOI | MR | Zbl

[4] T. Kawahara, M. Tanaka, Phys. Lett. A, 97 (1983), 311 | DOI | MR

[5] J. Satsuma, Exact solutions of Burgers' equation with reaction terms, preprint, 1987 | MR

[6] R. Conte, Phys. Lett. A, 134 (1988), 100 ; F. Cariello, M. Tabor, Physica D, 39 (1989), 77 ; P. G. Estévez, P. R. Gordoa, J. Phys. A, 23 (1990), 4831 ; Z. Chen, B. Guo, IMA J. Appl. Math., 48 (1992), 645 | DOI | MR | DOI | MR | Zbl | DOI | MR | Zbl | MR

[7] M. C. Nucci, P. A. Clarkson, Phys. Lett. A, 164 (1992), 49–56 | DOI | MR

[8] G. W. Bluman, J. D. Cole, J. Math. Mech., 18 (1969), 1025 | MR | Zbl

[9] P. J. Olver, P. Rosenau, Phys. Lett. A, 114 (1986), 107 ; SIAM J. Appl. Math., 47 (1987), 263 | DOI | MR | Zbl | DOI | MR | Zbl

[10] P. A. Clarkson, P. Winternitz, Physica D, 49 (1991), 257 | DOI | MR | Zbl

[11] N. A. Kudryashov, Phys. Lett. A, 169 (1992), 237 | DOI | MR

[12] I. M. Gel'fand, L. A. Dikii, Uspekhi Matem. Nauk, 30 (1975), 67 | MR | Zbl

[13] R. L. Anderson, N. H. Ibragimov, Lie-Bäcklund Transformations in Applications, SIAM Studies in Applied Mathematics, 1, SIAM, Philadelphia, 1979 | MR | Zbl

[14] A. S. Fokas, I. M. Gel'fand, “Bi-hamiltonian structures and integrability”, Important Developments in Soliton Theory, eds. A. S. Fokas, V. E. Zakharov, Springer-Verlag, 1993 | DOI | MR

[15] L. V. Ovsiannikov, Group Analysis of Differential Equations, Academic, New York, 1982 | MR | Zbl

[16] E. L. Ince, Ordinary Differential Equations, Longmans Green, London, New York, 1926

[17] A. S. Fokas, J. Math. Phys., 21 (1980), 1318 ; Stud. Appl. Math., 77 (1987), 253 | DOI | MR | Zbl | DOI | MR | Zbl