Several conjectures and results in the theory of integrable Hamiltonian systems of hydrodynamic type, which do not possess Riemann invariants
Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 2, pp. 257-262 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We formulate several conjectures concerning the structure and general properties of the $n\times n$ integrable nondiagonalizable hamiltonian systems of hydrodynamic type. For $n=3$ our results are in fact complete: a $3\times 3$ nondiagonalizable hamiltonian system is integrable if and only if it is weakly nonlinear (linearly degenerate).
@article{TMF_1994_99_2_a11,
     author = {E. V. Ferapontov},
     title = {Several conjectures and results in the theory of integrable {Hamiltonian} systems of hydrodynamic type, which do not possess {Riemann} invariants},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {257--262},
     year = {1994},
     volume = {99},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TMF_1994_99_2_a11/}
}
TY  - JOUR
AU  - E. V. Ferapontov
TI  - Several conjectures and results in the theory of integrable Hamiltonian systems of hydrodynamic type, which do not possess Riemann invariants
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1994
SP  - 257
EP  - 262
VL  - 99
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1994_99_2_a11/
LA  - en
ID  - TMF_1994_99_2_a11
ER  - 
%0 Journal Article
%A E. V. Ferapontov
%T Several conjectures and results in the theory of integrable Hamiltonian systems of hydrodynamic type, which do not possess Riemann invariants
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1994
%P 257-262
%V 99
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1994_99_2_a11/
%G en
%F TMF_1994_99_2_a11
E. V. Ferapontov. Several conjectures and results in the theory of integrable Hamiltonian systems of hydrodynamic type, which do not possess Riemann invariants. Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 2, pp. 257-262. http://geodesic.mathdoc.fr/item/TMF_1994_99_2_a11/

[1] Dubrovin B. A., Novikov S. P., Usp. Mat. Nauk, 44 (1989), 29 | MR | Zbl

[2] Tsarev S. P., Math. USSR Izvestiya, 37 (1991), 397 | DOI | MR

[3] Tsarev S. P., Dokl. Acad. Nauk SSSR, 282 (1985), 534 | MR | Zbl

[4] Ferapontov E. V., Physica D, 63 (1993), 50 | DOI | MR | Zbl

[5] Tsarev S. P., “Classical differential geometry and integrability of systems of hydrodynamic type”, Differential equations (Exeter, 1992), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 413, Kluwer Acad. Publ., Dordrecht, 1993, 241–249 | MR | Zbl

[6] Ferapontov E. V., “Dupin hypersurfaces and integrable Hamiltonian systems of hydrodynamic type, which do not possess Riemann invariants”, Differential Geom. Appl., 5:2 (1995), 121–152 | DOI | MR | Zbl

[7] Ferapontov E. V., Phys. Lett.A , 179 (1993) | DOI | MR

[8] Nijenhuis A., Indagationes Mathematicas, 13 (1951), 200 | DOI | MR | Zbl

[9] Haantjes A., Indagationes Mathematicas, 17 (1955), 158 | DOI | MR

[10] Ferapontov E. V., Tsarev S. P., Mat. Modelirovanie, 3:2 (1991), 82 | MR | Zbl

[11] Ferapontov E. V., Phys. Lett. A, 158 (1991), 112 | DOI | MR