Non classical symmetries and the Singular Manifold Method: the Burgers equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 2, pp. 250-256 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A generalization of the Direct Method of Clarcson and Kruskal for finding Similarity Reductions of a PDE is found and discussed. The generalization incorporates the Singular Manifold Method largely based upon the Painleve Property. The symmetries found in this way are shown to be those correspondent to the so called Non Classical Symmetries by Blumen–Cole and Olver–Rosenau. The procedure is applied to the Burgers equation.
@article{TMF_1994_99_2_a10,
     author = {P. G. Estevez and P. R. Gordoa},
     title = {Non classical symmetries and the {Singular} {Manifold} {Method:} the {Burgers} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {250--256},
     year = {1994},
     volume = {99},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TMF_1994_99_2_a10/}
}
TY  - JOUR
AU  - P. G. Estevez
AU  - P. R. Gordoa
TI  - Non classical symmetries and the Singular Manifold Method: the Burgers equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1994
SP  - 250
EP  - 256
VL  - 99
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1994_99_2_a10/
LA  - en
ID  - TMF_1994_99_2_a10
ER  - 
%0 Journal Article
%A P. G. Estevez
%A P. R. Gordoa
%T Non classical symmetries and the Singular Manifold Method: the Burgers equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1994
%P 250-256
%V 99
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1994_99_2_a10/
%G en
%F TMF_1994_99_2_a10
P. G. Estevez; P. R. Gordoa. Non classical symmetries and the Singular Manifold Method: the Burgers equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 2, pp. 250-256. http://geodesic.mathdoc.fr/item/TMF_1994_99_2_a10/

[1] G. W. Bluman, J. D. Cole, Similarity Methods for Differential Equations, Springer-Verlag, 1974 | MR | Zbl

[2] P. Olver, P. Rosenau, Phys. Lett. A, 114 (1986), 107 | DOI | MR | Zbl

[3] P. A. Clarcson, M. D. Kruskal, J. Math. Phys., 30 (1989), 2201 | DOI | MR

[4] P. A. Clarcson, J. Phys. A: Math. Gen., 22 (1989), 3821 | DOI | MR

[5] D. Levy, P. Wintemitz, Physica D, 49 (1991), 257 | DOI | MR

[6] M. C. Nucci, P. A. Clarcson, Phys. Lett. A, 164 (1992), 49 | DOI | MR

[7] E. Pucci, J. Phys. A: Math. Gen., 25 (1992), 2631 | DOI | MR | Zbl

[8] P. G. Estevez, Phys. Lett. A, 171 (1992), 259 | DOI | MR

[9] J. Weiss, J. Math. Phys., 24 (1983), 1405 | DOI | MR | Zbl

[10] J. Weiss, M. Tabor, J. Carnevale, J. Math. Phys., 24 (1983), 522 | DOI | MR | Zbl

[11] W. F. Ames, Non Linear Partial Differential Equations in Engineering, Academic Press, New York, 1972 | MR | Zbl

[12] M. Mussete, R. Conte, J. Math. Phys., 32 (1991), 1450 | DOI | MR