Non classical symmetries and the Singular Manifold Method: the Burgers equation
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 2, pp. 250-256
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A generalization of the Direct Method of Clarcson and Kruskal for finding Similarity Reductions of a PDE is found and discussed. The generalization incorporates the Singular Manifold Method largely based upon the Painleve Property. The symmetries found in this way are shown to be those correspondent to the so called Non Classical Symmetries by Blumen–Cole and 
Olver–Rosenau. The procedure is applied to the Burgers equation.
			
            
            
            
          
        
      @article{TMF_1994_99_2_a10,
     author = {P. G. Estevez and P. R. Gordoa},
     title = {Non classical symmetries and the {Singular} {Manifold} {Method:} the {Burgers} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {250--256},
     publisher = {mathdoc},
     volume = {99},
     number = {2},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TMF_1994_99_2_a10/}
}
                      
                      
                    TY - JOUR AU - P. G. Estevez AU - P. R. Gordoa TI - Non classical symmetries and the Singular Manifold Method: the Burgers equation JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1994 SP - 250 EP - 256 VL - 99 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1994_99_2_a10/ LA - en ID - TMF_1994_99_2_a10 ER -
P. G. Estevez; P. R. Gordoa. Non classical symmetries and the Singular Manifold Method: the Burgers equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 2, pp. 250-256. http://geodesic.mathdoc.fr/item/TMF_1994_99_2_a10/
