Generalized Kustaanheimo–Stiefel transformations
Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 1, pp. 75-80 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper the theory of constructing the generalized KS transformations is given for the Kepler problem dimensions $q+1$ ($q=2^h$, $h=0,1,2,\dots$). The following theorem is proved: The connection between the Kepler problem in $(q+1)$-dimensional real space and the problem of an isotropic harmonic oscillator in real space of dimension $N$ exists and can be established by using the generalized KS transformations only for the cases, when $N=2q$ and $q=2^h$ ($h=0,1,2,\dots$). A simple graphic method of constructing the generalized KS transformations realizing this connection is also suggested.
@article{TMF_1994_99_1_a6,
     author = {L. I. Komarov and Le Van Hoang},
     title = {Generalized {Kustaanheimo{\textendash}Stiefel} transformations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {75--80},
     year = {1994},
     volume = {99},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1994_99_1_a6/}
}
TY  - JOUR
AU  - L. I. Komarov
AU  - Le Van Hoang
TI  - Generalized Kustaanheimo–Stiefel transformations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1994
SP  - 75
EP  - 80
VL  - 99
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1994_99_1_a6/
LA  - ru
ID  - TMF_1994_99_1_a6
ER  - 
%0 Journal Article
%A L. I. Komarov
%A Le Van Hoang
%T Generalized Kustaanheimo–Stiefel transformations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1994
%P 75-80
%V 99
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1994_99_1_a6/
%G ru
%F TMF_1994_99_1_a6
L. I. Komarov; Le Van Hoang. Generalized Kustaanheimo–Stiefel transformations. Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 1, pp. 75-80. http://geodesic.mathdoc.fr/item/TMF_1994_99_1_a6/

[1] Kustaanheimo, Stiefel E., J. Reine Angew. Math., 218 (1965), 204–219 | MR | Zbl

[2] Bergmann P., Frishman Y., J. Math. Phis., 6 (1965), 1855–1856 | DOI | MR

[3] Boiteux M., Physica, 65 (1973), 381–395 | DOI

[4] Komarov L. I., Romanova T. S., Vestsi AN BSSR. Ser. fiz. mat. navuk, 1982, no. 2, 98–103 | MR

[5] Komarov L. I., Romanova T. S., Chan Za An, Vestsi AN BSSR. Ser. fiz. mat. navuk, 1987, no. 1, 90–98

[6] Pris I. E., Tolkachev E. A., YaF, 54 (1991), 962–966

[7] Jaroszkiewicz G. A., McHale G., Annals of Phys., 175 (1987), 267–277 | DOI | MR | Zbl

[8] Barut A. O., Schneider C. K. E., Raj Wilson, J. Math. Phys., 20 (1979), 2244–2256 | DOI | MR

[9] Davtyan L. S., Mardogan L. G., Pogosyan G. S., Sissakian A. N., Ter-Antonyan V. M., J. Phys. A: Math. Gen., 20 (1987), 6121–6125 | DOI | MR

[10] Cordani B., Reina C., Lett. Math. Phys., 13 (1987), 79–82 | DOI | MR

[11] Lambert D., Kibler M., J. Phys. A: Math. Gen., 21 (1988), 307–343 | DOI | MR | Zbl

[12] Le Van Hoang, Viloria A., Tony J., Le Anh Thu, J. Phys. A: Math. Gen., 24 (1991), 3021–3030 | DOI

[13] Bruno Cordani, J. Phys. A: Math. Gen., 22 (1989), 2441–2446 | DOI | MR | Zbl

[14] Polubarinov I. V., On Application of Hopf Fiber Bundles in Quantum Theory, preprint E2-84-607, JINR, Dubna, 1984 | MR