Semiclassical asymptotics of the eigenfunctions of the Schrödinger-Hartree equation. New form of classical self-consistent field
Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 1, pp. 141-154 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An asymptotics of eigen-functions of the Shrödinger equation per $h\to 0$ is studied when the corresponding classical trajectories are ergodic. New equations of self-consistent field and of plasma waves corresponding to its are derived.
@article{TMF_1994_99_1_a11,
     author = {V. P. Maslov},
     title = {Semiclassical asymptotics of the eigenfunctions of the {Schr\"odinger-Hartree} equation. {New} form of classical self-consistent field},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {141--154},
     year = {1994},
     volume = {99},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1994_99_1_a11/}
}
TY  - JOUR
AU  - V. P. Maslov
TI  - Semiclassical asymptotics of the eigenfunctions of the Schrödinger-Hartree equation. New form of classical self-consistent field
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1994
SP  - 141
EP  - 154
VL  - 99
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1994_99_1_a11/
LA  - ru
ID  - TMF_1994_99_1_a11
ER  - 
%0 Journal Article
%A V. P. Maslov
%T Semiclassical asymptotics of the eigenfunctions of the Schrödinger-Hartree equation. New form of classical self-consistent field
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1994
%P 141-154
%V 99
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1994_99_1_a11/
%G ru
%F TMF_1994_99_1_a11
V. P. Maslov. Semiclassical asymptotics of the eigenfunctions of the Schrödinger-Hartree equation. New form of classical self-consistent field. Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 1, pp. 141-154. http://geodesic.mathdoc.fr/item/TMF_1994_99_1_a11/

[1] Maslov V. P., DAN SSSR, 123:4 (1958), 631–633 | MR | Zbl

[2] Maslov V. P., Vorobev E. M., DAN SSSR, 179:3 (1968), 558–561

[3] Maslov V. P., UMN, XV:4(94) (1960), 220–221

[4] Maslov V. P., Teoriya vozmuschenii i asimptoticheskie metody, MGU, M., 1965 | MR

[5] Maslov V. P., Mathematical aspects of integral optics, MIEM, M., 1983

[6] Maslov V. P., Operatornye metody, Nauka, M., 1973 | MR

[7] Maslov V. P., Asimptoticheskie metody i teoriya vozmuschenii, Nauka, M., 1988 | MR

[8] Maslov V. P., Fedoryuk M. V., Kvaziklassicheskoe priblizhenie dlya uravnenii matematicheskoi fiziki, Nauka, M., 1976 | MR

[9] Maslov V. P., Samborskii S. N., Dokl. Rossiiskoi AN, 324:6 (1992)

[10] Maslov V. P., Funkts. analiz i ego prilozh., 28:1 (1994), 41–50 | MR | Zbl

[11] Maslov V. P., Matem. zametki, 55:3 (1994), 96–108 | MR | Zbl

[12] Bogolyubov N. N., Izv. AN SSSR. Ser. fiz., 11 (1947), 77–90 | MR

[13] Anosov D. V., Sinai Ya. G., UMN, 22:5 (1967), 107–172 | MR | Zbl

[14] Lieb E. H., Simon B., Comm. math. phys., 53:3 (1977), 185–194 | DOI | MR

[15] Shvarts A. S., TMF, 24 (1975), 333–346

[16] Vo Khan Fuk, Chetverikov V. M., TMF, 36:3 (1978), 345–351 | MR

[17] Kapacev M. B., Maslov V. P., TMF, 40:2 (1979), 235–244 | MR

[18] Zinchenko N. S., Kurs lektsii po elektronnoi optike, KhGU, Kharkov, 1958

[19] Kapacev M. B., Maslov V. P., Sovremennye problemy matematiki, 13, VINITI, M., 1979, 145

[20] Kantorovich L. V., Krylov V. I., Priblizhennye metody vysshego analiza, Fizmatgiz, M., 1962 | MR

[21] Maslov V. P., Shvedov O. Yu., TMF, 98:2 (1994), 266–288 | MR | Zbl