Essential spectrum of the Laplacian for the Neumann problem in a model region of complicated structure
Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 1, pp. 3-19 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A class of regions in which the Laplacian for the Neumann problem has an essential spectrum is considered. The connection between the geometrical characteristics of the region and spectral properties of the Laplacian for the Neumann problem is studied in specific examples
@article{TMF_1994_99_1_a1,
     author = {A. A. Kiselev and B. S. Pavlov},
     title = {Essential spectrum of the {Laplacian} for the {Neumann} problem in a~model region of complicated structure},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {3--19},
     year = {1994},
     volume = {99},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1994_99_1_a1/}
}
TY  - JOUR
AU  - A. A. Kiselev
AU  - B. S. Pavlov
TI  - Essential spectrum of the Laplacian for the Neumann problem in a model region of complicated structure
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1994
SP  - 3
EP  - 19
VL  - 99
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1994_99_1_a1/
LA  - ru
ID  - TMF_1994_99_1_a1
ER  - 
%0 Journal Article
%A A. A. Kiselev
%A B. S. Pavlov
%T Essential spectrum of the Laplacian for the Neumann problem in a model region of complicated structure
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1994
%P 3-19
%V 99
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1994_99_1_a1/
%G ru
%F TMF_1994_99_1_a1
A. A. Kiselev; B. S. Pavlov. Essential spectrum of the Laplacian for the Neumann problem in a model region of complicated structure. Teoretičeskaâ i matematičeskaâ fizika, Tome 99 (1994) no. 1, pp. 3-19. http://geodesic.mathdoc.fr/item/TMF_1994_99_1_a1/

[1] Kurant R., Gilbert L., Metody matematicheskoi fiziki, t. 2, OGIZ, M

[2] Pavlov B. C., Popov I. Yu., TMF, 86:3 (1991), 391–401 | MR

[3] Hempel R., Seco L. A., Simon B., J. Funct. Annal., 102:2 (1991), 448–483 | DOI | MR | Zbl

[4] Simon B., Proc. Amer. Math. Soc., 144:3 (1992), 783–785 | DOI | MR

[5] Pavlov B. C., Popov I. Yu., Vestn. LGU, 1985, no. 4, 99–102 | MR | Zbl

[6] Pavlov B. C., UMN, 42:6(258) (1987), 99–131 | MR | Zbl

[7] Birman M. Sh., Solomyak M. Z., Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Leningr. un-t, L., 1980 | MR

[8] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[9] Kiselev A. A., Popov I. Yu., TMF, 89:1 (1991), 11–17 | MR

[10] Popov I. Yu., Matem. sb., 183:3 (1992), 3–37 | Zbl