$q$-Hypergeometric Functions, Quantum Algebras and Free Fields
Teoretičeskaâ i matematičeskaâ fizika, Tome 98 (1994) no. 3, pp. 379-387 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the $q$-analogs ${}_r \phi _s$ of the generalized hypergeometric functions ${}_r F_s$. Their free field realization and quantum algebraic interpretation are reviewed.
@article{TMF_1994_98_3_a7,
     author = {R. Floreanini and A. Yu. Morozov and L. Vinet},
     title = {$q${-Hypergeometric} {Functions,} {Quantum} {Algebras} and {Free} {Fields}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {379--387},
     year = {1994},
     volume = {98},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1994_98_3_a7/}
}
TY  - JOUR
AU  - R. Floreanini
AU  - A. Yu. Morozov
AU  - L. Vinet
TI  - $q$-Hypergeometric Functions, Quantum Algebras and Free Fields
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1994
SP  - 379
EP  - 387
VL  - 98
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1994_98_3_a7/
LA  - ru
ID  - TMF_1994_98_3_a7
ER  - 
%0 Journal Article
%A R. Floreanini
%A A. Yu. Morozov
%A L. Vinet
%T $q$-Hypergeometric Functions, Quantum Algebras and Free Fields
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1994
%P 379-387
%V 98
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1994_98_3_a7/
%G ru
%F TMF_1994_98_3_a7
R. Floreanini; A. Yu. Morozov; L. Vinet. $q$-Hypergeometric Functions, Quantum Algebras and Free Fields. Teoretičeskaâ i matematičeskaâ fizika, Tome 98 (1994) no. 3, pp. 379-387. http://geodesic.mathdoc.fr/item/TMF_1994_98_3_a7/

[1] Gasper G., Rahman M., Basic Hypergeometric Series, Cambridge Unviersity Press, Cambridge, 1990 | MR | Zbl

[2] Miller W., Lie Theory and Special Functions, Academic Press, New York, 1968 | MR | Zbl

[3] Floreanini R., Vinet L., “Quantum algebras and $q$-special functions”, Ann. Phys., 221 (1993), 53–79 | DOI | MR

[4] Nikiforov A. F., Suslov S. K., Uvarov V. B., Classical Orthogonal Polynomials of Discrete Variable, Springer-Verlag, Berlin, 1992 | MR

[5] Miller W., “Lie theory and generalized hypergeometric functions”, SIAM J. Math. Anal., 3 (1972), 31–44 | DOI | MR | Zbl

[6] L. Vinet, A. Morozov, Mod. Phys. Lett. A, 8 (1993), 2891 | DOI | MR | Zbl

[7] Floreanini R., LeTourneux J., Vinet L., “An algebraic interpretation of the continuous big $q$-Hermite polynomials”, J. Math. Phys., 36 (1995), 5091–5097 | DOI | MR | Zbl