Nilpotent action on the KdV variables and 2-dimensional Drinfeld–Sokolov reduction
Teoretičeskaâ i matematičeskaâ fizika, Tome 98 (1994) no. 3, pp. 375-378
Cet article a éte moissonné depuis la source Math-Net.Ru
We note that a version “with spectral parameter” of the Drinfeld–Sokolov reduction gives a natural mapping from the KdV phase space to the group of loops with values in $\widehat N_{+}/A, \widehat N_{+}$: affine nilpotent and $A$ principal commutative (or anisotropic Cartan) subgroup; this mapping is connected to the conserved densities of the hierarchy. We compute the Feigin–Frenkel action of $\widehat n_{+}$ (defined in terms of screening operators) on the conserved densities, in the $sl_2$ case.
@article{TMF_1994_98_3_a6,
author = {B. Enriquez},
title = {Nilpotent action on the {KdV} variables and 2-dimensional {Drinfeld{\textendash}Sokolov} reduction},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {375--378},
year = {1994},
volume = {98},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1994_98_3_a6/}
}
B. Enriquez. Nilpotent action on the KdV variables and 2-dimensional Drinfeld–Sokolov reduction. Teoretičeskaâ i matematičeskaâ fizika, Tome 98 (1994) no. 3, pp. 375-378. http://geodesic.mathdoc.fr/item/TMF_1994_98_3_a6/
[1] V. G. Drinfeld, V. V. Sokolov, Jour. Sov. Math., 30 (1985), 1975–2036 | DOI | Zbl
[2] B. Feigin, E. Frenkel, “Integrals of motions and quantum groups”, Integrable systems and quantum groups (Montecatini Terme, 1993), Lecture Notes in Math., 1620, Springer, Berlin, 1996, 349–418 | DOI | MR | Zbl
[3] L. A. Dickey, Soliton Equations and Hamiltonian Systems, Advanced Series in Mathematical Physics, 12, World Scient., 1991 | DOI | MR | Zbl