Noncritical $W$-strings and Minimal Models
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 98 (1994) no. 3, pp. 343-357
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We perform a BRST analysis of the physical states described by a general noncritical $W$-string. A crucial feature of our analysis is that we introduce a special basis in the Hilbert space of physical states in which the BRST operator splits into a nested sum of nilpotent BRST operators. We argue that the cohomology of each nilpotent BRST operator occurring in the “nested” sum is closely related to a specific $W$ mimimal model. We discuss in detail the special case of the noncritical $W_3$-string.
			
            
            
            
          
        
      @article{TMF_1994_98_3_a4,
     author = {\'E. Bergshoeff},
     title = {Noncritical $W$-strings and {Minimal} {Models}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {343--357},
     publisher = {mathdoc},
     volume = {98},
     number = {3},
     year = {1994},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1994_98_3_a4/}
}
                      
                      
                    É. Bergshoeff. Noncritical $W$-strings and Minimal Models. Teoretičeskaâ i matematičeskaâ fizika, Tome 98 (1994) no. 3, pp. 343-357. http://geodesic.mathdoc.fr/item/TMF_1994_98_3_a4/
