Calogero quantum problem, Knizhnik–Zamolodchikov equation and Huygens principle
Teoretičeskaâ i matematičeskaâ fizika, Tome 98 (1994) no. 3, pp. 524-535
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The interrelations between Calogero quantum problem and Knizhnik–Zamolodchikov equation are described following Matsuo, Cherednik, Felder and the author. As the basic tool of the considerations the Dunkl operator is used. The generalizations related to arbitrary Coxeter group and the applications to the Hadamard problem about the hyperbolic equations with the Huygens principle are discussed.
@article{TMF_1994_98_3_a19,
     author = {A. P. Veselov},
     title = {Calogero quantum problem, {Knizhnik{\textendash}Zamolodchikov} equation and {Huygens} principle},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {524--535},
     year = {1994},
     volume = {98},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1994_98_3_a19/}
}
TY  - JOUR
AU  - A. P. Veselov
TI  - Calogero quantum problem, Knizhnik–Zamolodchikov equation and Huygens principle
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1994
SP  - 524
EP  - 535
VL  - 98
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1994_98_3_a19/
LA  - ru
ID  - TMF_1994_98_3_a19
ER  - 
%0 Journal Article
%A A. P. Veselov
%T Calogero quantum problem, Knizhnik–Zamolodchikov equation and Huygens principle
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1994
%P 524-535
%V 98
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1994_98_3_a19/
%G ru
%F TMF_1994_98_3_a19
A. P. Veselov. Calogero quantum problem, Knizhnik–Zamolodchikov equation and Huygens principle. Teoretičeskaâ i matematičeskaâ fizika, Tome 98 (1994) no. 3, pp. 524-535. http://geodesic.mathdoc.fr/item/TMF_1994_98_3_a19/

[1] Calogero F., J. Math. Phys., 12 (1971), 419–439 | DOI | MR

[2] Moser J., Adv. Math., 16 (1975), 1–23 | DOI | MR

[3] Olshanetsky M. A., Perelomov A. M., Phys. Rep., 94 (1983), 313–404 | DOI | MR

[4] Dunkl C. F., Trans. AMS, 311 (1989), 167–183 | DOI | MR | Zbl

[5] Heckman G., Prog. in Math., 101 (1991), 181–191 | MR | Zbl

[6] Knizhnik V. G., Zamolodchikov A. B., Nucl. Phys., 247 (1984), 83–103 | DOI | MR | Zbl

[7] Matsuo A., KZ type equations and zonal spherical functions, preprint of RIMS, Kyoto, 1991

[8] Cherednik I., Doklady AN SSSR, 307:1 (1989), 27–34 | MR

[9] Cherednik I., Invent. Math., 106 (1991), 411–431 | DOI | MR

[10] Cherednik I., Monodromy representations of generalized KZ equation and Hecke algebras, preprint ITP-89-74E, Kiev, 1989 | MR | Zbl

[11] Cherednik I., Integration of quantum many-body problems by affine KZ equation, preprint RIMS, Kyoto, 1991

[12] Felder G., Veselov A. P., Shift operator for the Calogero–Sutherland quantum problem via KZ equation, preprint of FIM, ETH, Zuerich, 1993, to appear in Comm. Math. Phys | MR

[13] Opdam E., Invent. Math., 98 (1989), 1–18 | DOI | MR | Zbl

[14] Veselov A. P., Styrkas K. L., Chalykh O. A., Theor. Math. Phys., 94:2 (1993), 182–197 | DOI | MR | Zbl

[15] Chalykh O. A., Veselov A. P., Comm. Math. Phys., 126 (1990), 597–611 | DOI | MR | Zbl

[16] Berest Yu. Yu., Veselov A. P., Uspekhi Mat. Nauk, 48:2 (1993), 181–182 | MR | Zbl

[17] Berest Yu. Yu., Veselov A. P., Funktsional. Anal. i Prilozhen., 28:1 (1994), 3–15 | DOI | MR | Zbl

[18] Hadamard J., Lectures on Cauchy's problem, Cambrige-New Haven, 1923

[19] Courant R., Hilbert D., Methods of Math. Physics, v. 2, New York, London, 1962 | MR

[20] Novikov S. P., Funktsional. Anal. i Prilozhen., 8:3 (1974), 54–66 | MR | Zbl

[21] Bourbaki N., Groupes et algebres de Lie, Chapitres 4–6, Paris, Hermann, 1969 | MR

[22] Krichever I. M., Funktsional. Anal. i Prilozhen., 14:4 (1980), 45–54 | MR | Zbl

[23] Heckman G., Invent. Math., 103 (1991), 341–350 | DOI | MR | Zbl

[24] Lagnese J. E., Stellmacher K. L., J. Math. Mech., 17:5 (1967), 461–472 | MR | Zbl

[25] Lagnese J. E., Proc. AMS, 19 (1968), 981–988 | DOI | MR | Zbl

[26] Arnold V. I., Catastrophe theory, Nauka, M., 1990 | MR | Zbl