Null vectors, 3-point and 4-point functions in conformal field theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 98 (1994) no. 3, pp. 500-508 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider 3-point and 4-point correlation functions in a conformal field theory with a $W$-algebra symmetry. Whereas in a theory with only Virasoro symmetry the three point functions of descendants fields are uniquely determined by the three point function of the corresponding primary fields this is not the case for a theory with $W_3$ algebra symmetry. The generic 3-point functions of $W$-descendant fields have a countable degree of arbitrariness. We find, however, that if one of the fields belongs to a representation with null states that this has implications for the 3-point functions. In particular if one of the representations is doubly-degenerate then the 3-point function is determined up to an overall constant. We extend our analysis to 4-point functions and find that if two of the $W$-primary fields are doubly degenerate then the intermediate channels are limited to a finite set and that the corresponding chiral blocks are determined up to an overall constant. This corresponds to the existence of a linear differential equation for the chiral blocks with two completely degenerate fields as has been found in the work of Bajnok et al.
@article{TMF_1994_98_3_a17,
     author = {P. Bowcock and G. Watts},
     title = {Null vectors, 3-point and 4-point functions in conformal field theory},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {500--508},
     year = {1994},
     volume = {98},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1994_98_3_a17/}
}
TY  - JOUR
AU  - P. Bowcock
AU  - G. Watts
TI  - Null vectors, 3-point and 4-point functions in conformal field theory
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1994
SP  - 500
EP  - 508
VL  - 98
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1994_98_3_a17/
LA  - ru
ID  - TMF_1994_98_3_a17
ER  - 
%0 Journal Article
%A P. Bowcock
%A G. Watts
%T Null vectors, 3-point and 4-point functions in conformal field theory
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1994
%P 500-508
%V 98
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1994_98_3_a17/
%G ru
%F TMF_1994_98_3_a17
P. Bowcock; G. Watts. Null vectors, 3-point and 4-point functions in conformal field theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 98 (1994) no. 3, pp. 500-508. http://geodesic.mathdoc.fr/item/TMF_1994_98_3_a17/

[1] Z. Bajnok, L. Palla, G. Takács, “$A(2)$ Toda theory in reduced WZNW framework and the representations of the $W$ algebra”, Nucl. Phys. B, 385 (1992), 329 ; Z. Bajnok, $C_2$ Toda theory in reduced WZNW framework, Inst. Theor. Phys. Univ. Budapest preprint ITP-Budapest-501, 1993 | DOI | MR | MR

[2] V. G. Kac, “Contravariant form for infinite-dimensional Lie algebras and super algebras”, Proc. Int. Congress Math., Helsinki, 1978

[3] A. A. Belavin, A. M. Polyakov, A. B. Zamolodchikov, Nucl. Phys. B, 241 (1984), 333 | DOI | MR | Zbl

[4] B. L. Feigin, D. B. Fuchs, Representations of the Virasoro algebra, Repts. Dept. Math. Stockholm Univ., 1986; Representations of infinite-dimensional Lie groups and Lie algebras, eds. A. Vershik, D. Zhelobenko, Gordon and Breach, 1989 | MR

[5] B. L. Feigin, D. B. Fuchs, Functional Analysis and its Applications, 16 (1982), 114 | DOI | Zbl

[6] B. L. Feigin, D. B. Fuchs, J. Geom. Phys., 5 (1988), 209 | DOI | MR | Zbl

[7] R. P. Langlands, Commun. Math. Phys., 124 (1989), 261 | DOI | MR | Zbl

[8] M. Bauer, P. di Francesco, C. Itzykson, J.-B. Zuber, Phys. Lett. B, 260 (1991), 323 | DOI | MR | Zbl

[9] A. Kent, Phys. Lett. B, 278 (1992), 443 | DOI | MR

[10] A. B. Zamolodchikov, Theor. Math. Phys., 65 (1985), 347 | DOI | MR

[11] G. M. T. Watts, “Determinant formulae for extended algebras in two-dimensional conformal field theory”, Nucl. Phys. B, 326 (1989), 648 | DOI | MR

[12] V. A. Fateev, A. B. Zamolodchikov, Nucl. Phys. B, 280 (1987), 644 | DOI | MR

[13] V. A. Fateev, S. L. Luk'yanov, Int. J. Mod. Phys. A, 3 (1988), 507 ; Sov. Sci. Rev. A, 15 (1990), 1 | DOI | MR

[14] F. A. Bais, P. Bouwknegt, K. Schoutens, M. Surridge, Nucl. Phys. B, 304 (1988), 348 | DOI | MR | Zbl

[15] I. N. Bernstein, I. M. Gelfand, S. I. Gelfand, “Differential operators on the base affine space and a study of $g$-modules”, Lie groups and their representations (Proc. Summer School, Bolyai János Math. Soc., Budapest, 1971), ed. I. M. Gelfand, Halsted, New York, 1975, 21–64 | MR

[16] P. Bouwknegt, J. McCarthy, K. Pilch, Semi-infinite cohomology of $W$-algebras, University of Southern California preprint USC-93/11, 1993 ; On the BRST structure of $W_3$ gravity coupled to $c=2$ matter, University of Southern California preprint USC-93/14, 1993; Proc. of AMS Special Session on Geometry and Physics (Los Angeles, nov. 1992) | MR

[17] P. Bowcock, G. M. T. Watts, Phys. Lett. B, 297 (1992), 282 | DOI | MR

[18] E. V. Frenkel, V. Kac, M. Wakimoto, “Characters and fusion rules for $W$-algebras via quantised Drinfe'd-Sokolov reductions”, Commun. Math. Phys., 147 (1992), 195 | DOI | MR