On the spaces of Dotsenko–Fateev integrals
Teoretičeskaâ i matematičeskaâ fizika, Tome 98 (1994) no. 3, pp. 479-491 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TMF_1994_98_3_a15,
     author = {R. Silvotti},
     title = {On the spaces of {Dotsenko{\textendash}Fateev} integrals},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {479--491},
     year = {1994},
     volume = {98},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TMF_1994_98_3_a15/}
}
TY  - JOUR
AU  - R. Silvotti
TI  - On the spaces of Dotsenko–Fateev integrals
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1994
SP  - 479
EP  - 491
VL  - 98
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1994_98_3_a15/
LA  - en
ID  - TMF_1994_98_3_a15
ER  - 
%0 Journal Article
%A R. Silvotti
%T On the spaces of Dotsenko–Fateev integrals
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1994
%P 479-491
%V 98
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1994_98_3_a15/
%G en
%F TMF_1994_98_3_a15
R. Silvotti. On the spaces of Dotsenko–Fateev integrals. Teoretičeskaâ i matematičeskaâ fizika, Tome 98 (1994) no. 3, pp. 479-491. http://geodesic.mathdoc.fr/item/TMF_1994_98_3_a15/

[1] K. Aomoto, “Gauss–Manin connection of integrals of difference products”, J. Math. Soc. Japan, 39 (1987), 191–208 | DOI | MR | Zbl

[2] A. A. Belavin, A. M. Polyakov, A. B. Zamolodchikov, “Infinite conformal symmetry in twodimensional quantum field theory”, Nucl. Phys. B, 241 (1984), 333–380 | DOI | MR | Zbl

[3] P. Deligne, M. Mostow, “Monodromy of hypergeometric functions and non-lattice integral monodromy”, Publ. Math. IHES, 63 (1986), 5–89 | DOI | MR | Zbl

[4] Vl. S. Dotsenko, V. A. Fateev, “Conformal algebra and multipoint correlation functions in $2D$ statistical models”, Nucl. Phys. B, 240 (1984), 312–348 | DOI | MR

[5] Vl. S. Dotsenko, V. A. Fateev, “Four-point correlation functions and the operator algebra in $2D$ conformal invariant theories with central charge $C\leqslant 1$”, Nucl. Phys. B, 251 (1984), 691–734 | DOI | MR

[6] H. Esnault, E. Viehweg, “Logarithmic De Rham complexes and vanishing theorems”, Invent. math., 86 (1986), 161–194 | DOI | MR | Zbl

[7] G. Felder, “BRST approach to minimal models”, Nucl. Phys. B, 317 (1989), 215–236 | DOI | MR

[8] G. Felder, J. Fröhlich, G. Keller, “Braid matrices and structure constants for minimal conformal models”, Commun. Math. Phys., 124 (1989), 647–664 | DOI | MR | Zbl

[9] G. Felder, R. Silvotti, “Conformal Blocks of Minimal Models on a Riemann Surface”, Commun. Math. Phys., 144 (1992), 17–40 | DOI | MR | Zbl

[10] I. M. Gelfand, M. M. Kapranov, A. V. Zelevinsky, “Generalized Euler Integrals and $A$-Hypergeometric Functions”, Adv. Math., 84 (1990), 255–271 | DOI | MR | Zbl

[11] T. Kohno, “Homology of a local system on the complement of hyperplanes”, Proc. Japan Acad. A, 62 (1986), 144–147 | DOI | MR | Zbl

[12] V. V. Schechtman, A. N. Varchenko, “Arrangement of hyperplanes and Lie algebra homology”, Invent. Math., 106 (1991), 139–194 | DOI | MR | Zbl

[13] R. Silvotti, Local systems on the complement of hyperplanes and fusion rules in conformal field theory; Local systems on the complement of hyperplanes and conformal field theory. II, preprints, 1993 | MR