Poincaré polynomials and level rank dualities in the $N=2$ coset construction
Teoretičeskaâ i matematičeskaâ fizika, Tome 98 (1994) no. 3, pp. 467-478 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We review the coset construction of conformal field theories; the emphasis is on the construction of the Hilbert spaces for these models, especially if fixed points occur. This is applied to the $N=2$ superconformal cosets constructed by Kazama and Suzuki. To calculate heterotic string spectra we reformulate the Gepner construction in terms of simple currents and introduce the so-called extended Poincaré polynomial. We finally comment on the various equivalences arising between models of this class, which can be expressed as level rank dualities.
@article{TMF_1994_98_3_a14,
     author = {Ch. Schweigert},
     title = {Poincar\'e polynomials and level rank dualities in the $N=2$ coset construction},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {467--478},
     year = {1994},
     volume = {98},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TMF_1994_98_3_a14/}
}
TY  - JOUR
AU  - Ch. Schweigert
TI  - Poincaré polynomials and level rank dualities in the $N=2$ coset construction
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1994
SP  - 467
EP  - 478
VL  - 98
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1994_98_3_a14/
LA  - en
ID  - TMF_1994_98_3_a14
ER  - 
%0 Journal Article
%A Ch. Schweigert
%T Poincaré polynomials and level rank dualities in the $N=2$ coset construction
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1994
%P 467-478
%V 98
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1994_98_3_a14/
%G en
%F TMF_1994_98_3_a14
Ch. Schweigert. Poincaré polynomials and level rank dualities in the $N=2$ coset construction. Teoretičeskaâ i matematičeskaâ fizika, Tome 98 (1994) no. 3, pp. 467-478. http://geodesic.mathdoc.fr/item/TMF_1994_98_3_a14/

[1] P. Goddard, A. Kent, D. I. Olive, Phys. Lett. B, 152 (1985), 88 ; Commun. Math. Phys., 103 (1986), 105 | DOI | MR | Zbl | DOI | MR | Zbl

[2] D. C. Dunbar, K. G. Joshi, Mod. Phys. Lett. A, 8 (1993), 2803 | DOI | MR | Zbl

[3] A. N. Schellekens, S. Yankielowicz, Int. J. Mod. Phys. A, 5 (1990), 2903 | DOI | MR | Zbl

[4] A. N. Schellekens, Nucl. Phys. B, 366 (1991), 27 | DOI | MR

[5] D. Gepner, Phys. Lett. B, 222 (1989), 207 | DOI | MR

[6] Y. Kazama, H. Suzuki, Phys. Lett. B, 216 (1989), 112 | DOI | MR

[7] Y. Kazama, H. Suzuki, Nucl. Phys. B, 321 (1989), 232 | DOI | MR

[8] C. Schweigert, Commun. Math. Phys., 149 (1992), 425 | DOI | MR | Zbl

[9] J. Fuchs, C. Schweigert, Nuclear Phys. B, 411:1 (1994), 181–222 | DOI | MR | Zbl

[10] J. Fuchs, C. Schweigert, Ann. Physics, 234:1 (1994), 102–140 | DOI | MR | Zbl

[11] W. Lerche, C. Vafa, N. P. Warner, Nucl. Phys. B, 324 (1989), 427 | DOI | MR

[12] T. Eguchi, T. Kawai, S. Mizoguchi, S. K. Yang, Rev. Math. Phys., 4 (1992), 329 | DOI | MR | Zbl

[13] D. Gepner, preprint PUPT-1130, may 1989

[14] D. Gepner, Phys. Lett. B, 199 (1987), 380 | DOI | MR

[15] E. Buturović, Nucl. Phys. B, 352 (1991), 163 | DOI | MR

[16] F. Englert, H. Nicolai, A. N. Schellekens, Nucl. Phys. B, 274 (1986), 315 | DOI | MR

[17] E. J. Mlawer, S. G. Naculich, H. A. Riggs, H. J. Schnitzer, Nucl. Phys. B, 352 (1991), 863 | DOI | MR

[18] D. Altschüler, Nucl. Phys. B, 313 (1989), 293 | DOI | MR