Poincar\'e polynomials and level rank dualities in the $N=2$ coset construction
Teoretičeskaâ i matematičeskaâ fizika, Tome 98 (1994) no. 3, pp. 467-478

Voir la notice de l'article provenant de la source Math-Net.Ru

We review the coset construction of conformal field theories; the emphasis is on the construction of the Hilbert spaces for these models, especially if fixed points occur. This is applied to the $N=2$ superconformal cosets constructed by Kazama and Suzuki. To calculate heterotic string spectra we reformulate the Gepner construction in terms of simple currents and introduce the so-called extended Poincaré polynomial. We finally comment on the various equivalences arising between models of this class, which can be expressed as level rank dualities.
@article{TMF_1994_98_3_a14,
     author = {Ch. Schweigert},
     title = {Poincar\'e polynomials and level rank dualities in the $N=2$ coset construction},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {467--478},
     publisher = {mathdoc},
     volume = {98},
     number = {3},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TMF_1994_98_3_a14/}
}
TY  - JOUR
AU  - Ch. Schweigert
TI  - Poincar\'e polynomials and level rank dualities in the $N=2$ coset construction
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1994
SP  - 467
EP  - 478
VL  - 98
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1994_98_3_a14/
LA  - en
ID  - TMF_1994_98_3_a14
ER  - 
%0 Journal Article
%A Ch. Schweigert
%T Poincar\'e polynomials and level rank dualities in the $N=2$ coset construction
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1994
%P 467-478
%V 98
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1994_98_3_a14/
%G en
%F TMF_1994_98_3_a14
Ch. Schweigert. Poincar\'e polynomials and level rank dualities in the $N=2$ coset construction. Teoretičeskaâ i matematičeskaâ fizika, Tome 98 (1994) no. 3, pp. 467-478. http://geodesic.mathdoc.fr/item/TMF_1994_98_3_a14/