Exactly solvable boson model with cubic nonlinearity
Teoretičeskaâ i matematičeskaâ fizika, Tome 98 (1994) no. 2, pp. 289-296
Cet article a éte moissonné depuis la source Math-Net.Ru
The model of phase matched parametric amplifier, Hamiltonian of which has a cubic nonlinearity with respect to the Bose-field, is assumed. Exact operator solution is obtained. Evolution of the photon intensity and the corresponding variance is examined Conditions, defining the sub-Poissonian charachter of the number destribution and the squeezing of quantum fluctuations of modequadraturs, are obtained.
@article{TMF_1994_98_2_a8,
author = {A. B. Gordiets and W. Chmielowski},
title = {Exactly solvable boson model with cubic nonlinearity},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {289--296},
year = {1994},
volume = {98},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1994_98_2_a8/}
}
A. B. Gordiets; W. Chmielowski. Exactly solvable boson model with cubic nonlinearity. Teoretičeskaâ i matematičeskaâ fizika, Tome 98 (1994) no. 2, pp. 289-296. http://geodesic.mathdoc.fr/item/TMF_1994_98_2_a8/
[1] Yariv A., Louisell W. H., IEEE J. Quantum Electronics, QE-2 (1966), 418 | DOI
[2] Yamamoto Y., Haus H. A., Rev. Mod. Phys., 58 (1986), 1001 | DOI
[3] Yuen H. P., Phys. Rev. A, 13 (1976), 2226 | DOI
[4] Mollow B. R., Glauber R. J., Phys. Rev., 160 (1967), 1076, 1097 | DOI
[5] Lu E. Y. C., Phys. Rev. Lett., 23 (1974)
[6] Stoler D., Phys. Rev. Lett., 23 (1974)
[7] Bogolyubov N. N.(ml.), Kozerovski M., Chan Kuang, Shumovskii A. S., EChAYa, 19 (1988), 831
[8] Rupasov V. I., ZhETF, 94 (1988), 84
[9] Carusotto S., Phys. Rev. A, 40 (1989), 1848 | DOI | MR
[10] Tanas R., Phys. Lett. A, 141 (1989), 217 | DOI