Explicit Bäcklund transformations for multifield Schrödinger equations. Jordan generalizations of the Toda chain
Teoretičeskaâ i matematičeskaâ fizika, Tome 98 (1994) no. 2, pp. 207-219 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Bäcklund transformations for multifield analogs of the nonlinear Schrödinger equation that correspond to unital Jordan algebras are found. These Bäcklund transformations are explicit invertible autotransformations and as a result they are very convenient for the construction of exact solutions. It is established that to these Bäcklund transformations there correspond integrable multifield discrete–differential equations that generalize the infinite Toda chain. A simple construction is given by means of which multifield analogs of the infinite Toda chain can be constructed from every unital Jordan algebra. New examples of such chains are given.
@article{TMF_1994_98_2_a3,
     author = {S. I. Svinolupov and R. I. Yamilov},
     title = {Explicit {B\"acklund} transformations for multifield {Schr\"odinger} equations. {Jordan} generalizations of the {Toda} chain},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {207--219},
     year = {1994},
     volume = {98},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1994_98_2_a3/}
}
TY  - JOUR
AU  - S. I. Svinolupov
AU  - R. I. Yamilov
TI  - Explicit Bäcklund transformations for multifield Schrödinger equations. Jordan generalizations of the Toda chain
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1994
SP  - 207
EP  - 219
VL  - 98
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1994_98_2_a3/
LA  - ru
ID  - TMF_1994_98_2_a3
ER  - 
%0 Journal Article
%A S. I. Svinolupov
%A R. I. Yamilov
%T Explicit Bäcklund transformations for multifield Schrödinger equations. Jordan generalizations of the Toda chain
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1994
%P 207-219
%V 98
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1994_98_2_a3/
%G ru
%F TMF_1994_98_2_a3
S. I. Svinolupov; R. I. Yamilov. Explicit Bäcklund transformations for multifield Schrödinger equations. Jordan generalizations of the Toda chain. Teoretičeskaâ i matematičeskaâ fizika, Tome 98 (1994) no. 2, pp. 207-219. http://geodesic.mathdoc.fr/item/TMF_1994_98_2_a3/

[1] Shabat A. B., Yamilov R. I., Algebra i analiz, 2:2 (1990), 183–208 | MR

[2] Leznov A. N., Shabat A. B., Yamilov R. I., Phys. Lett. A, 240 (1993), 548–552 | MR

[3] Leznov A. N., Bäcklund transformation for integrable systems, prepint IHEP 92-87, IHEP, Protvino, 1992 | MR

[4] Fordy A. P., Kulish P., Commun. Math. Phys., 89 (1983), 427–443 | DOI | MR | Zbl

[5] Svinolupov S. I., Commun. Math. Phys., 143 (1992), 559–575 | DOI | MR | Zbl

[6] Manakov S. V., ZhETF, 65 (1973), 505–525

[7] Koecher M., “Jordan algebras and their applications”, Lecture Notes, University of Minesota, 1969 | MR | Zbl

[8] Jacobson N., Structure and representations of Jordan algebras, Amer. Math. Soc. Colloq. Publ., 39, Providence, R. I., 1968 | MR | Zbl

[9] Zhevlakov K. A., Slinko A. M., Shestakov I. P., Shirshov A. I., Koltsa, blizkie k assotsiativnym, Nauka, M., 1978 | MR | Zbl

[10] Loos O., Jordan Pairs, Lecture notes in mathematics, 460, Springer-Verlag, Berlin, Heidelberg, New York, 1975 | DOI | MR | Zbl

[11] Svinolupov S. I., Yamilov R. I., Phys. Lett. A, 160 (1991), 548–552 | DOI | MR

[12] Shabat A. V., Yamilov R. I., Phys. Lett. A, 130:4–5 (1988), 271–275 | DOI | MR