Theorem of Livšic type for dispersed billiards
Teoretičeskaâ i matematičeskaâ fizika, Tome 98 (1994) no. 2, pp. 184-196
Cet article a éte moissonné depuis la source Math-Net.Ru
Piecewise-Hölder functions on the phase space of a dispersed billiard are considered. It is shown that if the integral of such a function around any periodic trajectory is zero then the function itself is cohomologous to zero.
@article{TMF_1994_98_2_a1,
author = {K. M. Efimov},
title = {Theorem of {Liv\v{s}ic} type for dispersed billiards},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {184--196},
year = {1994},
volume = {98},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1994_98_2_a1/}
}
K. M. Efimov. Theorem of Livšic type for dispersed billiards. Teoretičeskaâ i matematičeskaâ fizika, Tome 98 (1994) no. 2, pp. 184-196. http://geodesic.mathdoc.fr/item/TMF_1994_98_2_a1/
[1] Bunimovich L. A., Sinai Ya. G., Chernov N. I., UMN, 45:3 (1990), 97–134 | MR | Zbl
[2] Bunimovich L. A., Sinai Ya. G., Chernov N. I., UMN, 46:4 (1991), 43–92 | MR
[3] Sinai Ya. G., UMN, 25:2 (1970), 141–192 | MR | Zbl
[4] Gallavotti G., Ornstein D., Commun. Math. Phys., 38:2 (1974), 83–101 | DOI | MR | Zbl
[5] Bunimovich L. A., Sinai Ya. G., Commun. Math. Phys., 73:2 (1980), 247–280 | DOI | MR
[6] Bunimovich L. A., Sinai Ya. G., Commun. Math. Phys., 107:2 (1986), 357–358 | DOI | MR
[7] Bouen R., Metody simvolicheskoi dinamiki, Sb. statei, Mir, M., 1979
[8] Livshits A. N., Mat. zametki, 10:5 (1971), 555–564 | MR | Zbl