Diffusion in layered media at large time
Teoretičeskaâ i matematičeskaâ fizika, Tome 98 (1994) no. 1, pp. 106-148 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The large-time asymptotic behavior of the Green's function for the one-dimensional diffusion equation is found in two cases: 1) the potential is a function with compact support; 2) the potential is a periodic function of the coordinates. In the first case, the asymptotic behavior of the Green's function can be expressed in terms of the elements of the $S$ matrix of the corresponding Schrödinger operator for negative values of the energy on the spectral plane. In the second case, the asymptotic behavior can be expressed in terms of Floquet–Bloch functions of the corresponding Hille operator at negative values of the energy on the spectral plane. The results are used to study diffusion in layered media at large times. The case of external force is also considered. In the periodic case, the Seeley coefficients are found.
@article{TMF_1994_98_1_a9,
     author = {E. L. Korotyaev and N. E. Firsova},
     title = {Diffusion in layered media at large time},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {106--148},
     year = {1994},
     volume = {98},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1994_98_1_a9/}
}
TY  - JOUR
AU  - E. L. Korotyaev
AU  - N. E. Firsova
TI  - Diffusion in layered media at large time
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1994
SP  - 106
EP  - 148
VL  - 98
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1994_98_1_a9/
LA  - ru
ID  - TMF_1994_98_1_a9
ER  - 
%0 Journal Article
%A E. L. Korotyaev
%A N. E. Firsova
%T Diffusion in layered media at large time
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1994
%P 106-148
%V 98
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1994_98_1_a9/
%G ru
%F TMF_1994_98_1_a9
E. L. Korotyaev; N. E. Firsova. Diffusion in layered media at large time. Teoretičeskaâ i matematičeskaâ fizika, Tome 98 (1994) no. 1, pp. 106-148. http://geodesic.mathdoc.fr/item/TMF_1994_98_1_a9/

[1] Korotyaev E. L., 14-ya Vsesoyuznaya shkola po teorii lineinykh operatorov v funktsionalnykh prostranstvakh, Nizhne-Novgorodskii universitet, N. Novgorod, 1991

[2] Faddeev L. D., Tr. MIAN SSSR, 73, 1964, 314 – 336 | MR | Zbl

[3] Firsova N. E., Mat. sb., 130(172):3(7) (1986), 349 – 385 | MR | Zbl

[4] Fedoryuk M. V., Metod perevala, Nauka, M., 1977 | MR

[5] Firsova N. E., Zap. nauchn. semin. LOMI, 51, 1975, 183 – 196 | MR | Zbl

[6] Marchenko V. A., Ostrovskii I. V., Mat. sb., 97(139):4(8) (1975), 540 – 606 | MR | Zbl

[7] Seeley R. T., Proc. Symp. in Pure Math., 10, 1967, 288 – 307 | DOI | MR | Zbl

[8] Levitan B. M., Obratnye zadachi Shturma – Liuvillya, Nauka, M., 1984 | MR

[9] Titchmarsh E. P., Razlozheniya po sobstvennym funktsiyam, svyazannye s differentsialnymi uravneniyami vtorogo poryadka, T. 2, IL, M., 1961 | MR

[10] Firsova N. E., Mat.zametki, 36:5 (1984), 711 – 724 | MR | Zbl

[11] Korotyaev E. L., Zap. nauchn. semin. LOMI, 195, 1991, 48 – 57 | MR

[12] Its A. R., Matveev V. B., TMF, 23:1 (1975), 51 – 68 | MR

[13] Gurvits A., Kurant R., Teoriya funktsii, Nauka, M., 1968 | MR