Exactly solvable lattice model of rooted branched polymers
Teoretičeskaâ i matematičeskaâ fizika, Tome 98 (1994) no. 1, pp. 90-105
Voir la notice de l'article provenant de la source Math-Net.Ru
A lattice model of rooted branched polymers that has an exact solution in all dimensions is considered. Kirchhoff's theorem is used to calculate the partition function of the model. Universal behavior of the thermodynamic functions of the model in the close-packing limit is found. A matrix procedure for calculating the correlation functions is developed. The mean number of atoms of a polymer with given valence is calculated for arbitrary densities.
computed in the whole density range of polymers.
@article{TMF_1994_98_1_a8,
author = {E. I. Kornilov and V. B. Priezzhev},
title = {Exactly solvable lattice model of rooted branched polymers},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {90--105},
publisher = {mathdoc},
volume = {98},
number = {1},
year = {1994},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1994_98_1_a8/}
}
TY - JOUR AU - E. I. Kornilov AU - V. B. Priezzhev TI - Exactly solvable lattice model of rooted branched polymers JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1994 SP - 90 EP - 105 VL - 98 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1994_98_1_a8/ LA - ru ID - TMF_1994_98_1_a8 ER -
E. I. Kornilov; V. B. Priezzhev. Exactly solvable lattice model of rooted branched polymers. Teoretičeskaâ i matematičeskaâ fizika, Tome 98 (1994) no. 1, pp. 90-105. http://geodesic.mathdoc.fr/item/TMF_1994_98_1_a8/