The semiclassical approximation in quantum mechanics. A new approach
Teoretičeskaâ i matematičeskaâ fizika, Tome 98 (1994) no. 1, pp. 48-55 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown, that the quasiclassical approximation in quantum mechanics is equivalent to substitution of Schrödinger equation for finite closed system of ordinary differential equations of the first order with initial conditions, which satisfy special restrictions.
@article{TMF_1994_98_1_a4,
     author = {V. G. Bagrov and V. V. Belov and M. F. Kondrat'eva},
     title = {The semiclassical approximation in quantum mechanics. {A~new} approach},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {48--55},
     year = {1994},
     volume = {98},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1994_98_1_a4/}
}
TY  - JOUR
AU  - V. G. Bagrov
AU  - V. V. Belov
AU  - M. F. Kondrat'eva
TI  - The semiclassical approximation in quantum mechanics. A new approach
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1994
SP  - 48
EP  - 55
VL  - 98
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1994_98_1_a4/
LA  - ru
ID  - TMF_1994_98_1_a4
ER  - 
%0 Journal Article
%A V. G. Bagrov
%A V. V. Belov
%A M. F. Kondrat'eva
%T The semiclassical approximation in quantum mechanics. A new approach
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1994
%P 48-55
%V 98
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1994_98_1_a4/
%G ru
%F TMF_1994_98_1_a4
V. G. Bagrov; V. V. Belov; M. F. Kondrat'eva. The semiclassical approximation in quantum mechanics. A new approach. Teoretičeskaâ i matematičeskaâ fizika, Tome 98 (1994) no. 1, pp. 48-55. http://geodesic.mathdoc.fr/item/TMF_1994_98_1_a4/

[1] Grin Kh., Matrichnaya kvantovaya mekhanika, Mir, M., 1968 | MR

[2] Maslov V. P., Teoriya vozmuschenii i asimptoticheskie metody, Izd-vo MGU, M., 1965 | MR

[3] Maslov V. P., Fedoryuk M. V., Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR

[4] Maslov V. P., Asimptoticheskie metody i teoriya vozmuschenii, Nauka, M., 1988 | MR

[5] Buslaev V. S., Funkts. analiz i ego prilozh., 3:3 (1969), 17–31 | MR | Zbl

[6] Kucherenko V. V., Izv. AN SSSR. Ser. matem., 38 (1974), 625–662 | MR | Zbl

[7] Lere Zh., Lagranzhev analiz i kvantovaya mekhanika, Mir, M., 1981 | MR

[8] Dobrokhotov S. Yu., Maslov V. P., Sovr. probl. matem., 17, VINITI, 1980, 3–91 | MR

[9] Danilov V. G., Maslov V. P., Sovr. probl. matem., 6, VINITI, 1975, 5–132 | MR

[10] Mischenko A. S., Sternin B. Yu., Shatalov V. E., Lagranzhevy mnogoobraziya i metod kanonicheskogo operatora, Nauka, M., 1978 | MR

[11] Belov V. V., Dobrokhotov S. Yu., DAN SSSR, 298:5 (1988), 1037–1042 | MR | Zbl

[12] Belov V. V., Dobrokhotov S. Yu., Kvaziklassicheskie asimptotiki Maslova v spektralnykh kvantovykh zadachakh, sootvetstvuyuschikh chastichno integriruemym gamiltonovym sistemam, Preprint, MIAN, M., 1988 | MR

[13] Karasev M. V., Maslov V. P., Izv. AN SSSR. Ser. matem., 47:5 (1983), 999–1029 | MR | Zbl

[14] Dodonov V. V., Manko V. P., Trudy FIAN, 183, 5–70 | MR

[15] Bagrov V. G., Belov V. V., Ternov I. M., TMF, 50:3 (1982), 390–396 | MR

[16] Bagrov V. G., Belov V. V., Ternov I. M., J. Math. Phys., 24:12 (1983), 2855–2859 | DOI | MR

[17] Rogova A. M., Dep. v VINITI, No 129–B9, VINITI, M., 1992

[18] Belov V. V., Maslov V. P., DAN SSSR, 311:4 (1990), 849–854 | MR

[19] Belov V. V., Kondrateva M. F., TMF, 92:1 (1992), 41–60 | MR

[20] Wong S. K., Nuovo Cim., LXV A:4 (1970), 689–694 | DOI