Solutions of the Schrödinger equation in the case of a semiinfinite crystal
Teoretičeskaâ i matematičeskaâ fizika, Tome 98 (1994) no. 1, pp. 38-47 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that the bounded solutions of the Bloch type in $x_1$, $x_2$ variables of the Schrödinger equation with the potential which is periodic in the semi-space $\{x_3\geqslant 0\}$ and exponentially decreases when $x_3\to -\infty$, may be approximated by the solutions of the Schrödinger equation which correspond to crystal films with a number of layers tending to infinity. It gives the possibility to find the number of linearly independent solutions of this type under some propositions.
@article{TMF_1994_98_1_a3,
     author = {Yu. P. Chuburin},
     title = {Solutions of the {Schr\"odinger} equation in the case of a~semiinfinite crystal},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {38--47},
     year = {1994},
     volume = {98},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1994_98_1_a3/}
}
TY  - JOUR
AU  - Yu. P. Chuburin
TI  - Solutions of the Schrödinger equation in the case of a semiinfinite crystal
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1994
SP  - 38
EP  - 47
VL  - 98
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1994_98_1_a3/
LA  - ru
ID  - TMF_1994_98_1_a3
ER  - 
%0 Journal Article
%A Yu. P. Chuburin
%T Solutions of the Schrödinger equation in the case of a semiinfinite crystal
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1994
%P 38-47
%V 98
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1994_98_1_a3/
%G ru
%F TMF_1994_98_1_a3
Yu. P. Chuburin. Solutions of the Schrödinger equation in the case of a semiinfinite crystal. Teoretičeskaâ i matematičeskaâ fizika, Tome 98 (1994) no. 1, pp. 38-47. http://geodesic.mathdoc.fr/item/TMF_1994_98_1_a3/

[1] Davies E. B., Proc. Cambridge Philos. Soc., 82 (1977), 327 – 334 | DOI | MR | Zbl

[2] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, T. 4, Mir, M., 1982 | MR

[3] Chuburin Yu. P., Problemy sovremennoi teorii periodicheskikh dvizhenii, IMI, Izhevsk, 1984, 5–8

[4] Chuburin Yu. P., O spektre operatora Shredingera v sluchae poluogranichennogo kristalla, Dep. v VINITI, 7614-B, 1985

[5] Berezin F. A., Shubin M. A., Uravnenie Shredingera, MGU, M., 1983 | MR

[6] Chuburin Yu. P., TMF, 77:3 (1988), 472 – 478 | MR

[7] Chuburin Yu. P., TMF, 72:1 (1987), 120 – 131 | MR

[8] Chuburin Yu. P., O rasseyanii na kristallicheskoi plenke (spektr i asimptotika volnovykh funktsii uravneniya Shredingera), Preprint, FTI UNTs AN SSSR, Sverdlovsk, 1985

[9] Dyakin V. V., Analiticheskoe issledovanie obschikh svoistv zonnykh spektrov tverdykh tel, Dis. ...dokt. fiz.-mat. nauk, IFM UNTs AN SSSR, Sverdlovsk, 1984

[10] Tsikon Kh., Freze R., Kirsh V., Saimon B., Operatory Shredingera s prilozheniyami k kvantovoi mekhanike i globalnoi geometrii, Mir, M., 1990 | MR

[11] Trenogin V. A., Funktsionalnyi analiz, Nauka, M., 1980 | MR | Zbl

[12] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, T. 3, Mir, M., 1982 | MR