Field of sine-Gordon type in spacetime of arbitrary dimension: Existence of the nelson measure
Teoretičeskaâ i matematičeskaâ fizika, Tome 98 (1994) no. 1, pp. 12-28 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A model of a field with bounded current density is investigated. It is shown that there exists an infinite-fold integral that determines a generating functional of the Schwinger functions. It is shown that this functional is the Fourier transform of a probability measure on the field trajectories that is concentrated in a Hilbert subspace of the space of tempered distributions of first order of singularity. It is shown that the field satisfies the strong regularity axiom of Osterwalder and Schrader.
@article{TMF_1994_98_1_a1,
     author = {A. I. Kirillov},
     title = {Field of {sine-Gordon} type in spacetime of arbitrary dimension: {Existence} of the nelson measure},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {12--28},
     year = {1994},
     volume = {98},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1994_98_1_a1/}
}
TY  - JOUR
AU  - A. I. Kirillov
TI  - Field of sine-Gordon type in spacetime of arbitrary dimension: Existence of the nelson measure
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1994
SP  - 12
EP  - 28
VL  - 98
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1994_98_1_a1/
LA  - ru
ID  - TMF_1994_98_1_a1
ER  - 
%0 Journal Article
%A A. I. Kirillov
%T Field of sine-Gordon type in spacetime of arbitrary dimension: Existence of the nelson measure
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1994
%P 12-28
%V 98
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1994_98_1_a1/
%G ru
%F TMF_1994_98_1_a1
A. I. Kirillov. Field of sine-Gordon type in spacetime of arbitrary dimension: Existence of the nelson measure. Teoretičeskaâ i matematičeskaâ fizika, Tome 98 (1994) no. 1, pp. 12-28. http://geodesic.mathdoc.fr/item/TMF_1994_98_1_a1/

[1] Edwards S., Lenard A., J. Math. Phys., 3:4 (1962), 778–792 | DOI | MR | Zbl

[2] Frohlich J., Phys. Rev. Lett., 34:13 (1975), 833–836 | DOI | MR

[3] Frohlich J., Comm. Math. Phys., 47:3 (1976), 233–268; 269–310 | DOI | MR | Zbl

[4] Frohlich J., Park Y. M., Helv. Phys. Acta, 50 (1977), 315–329 | MR

[5] Albeverio S., Hoegh-Krohn R., Comm. Math. Phys., 68:2 (1979), 95–128 | DOI | MR | Zbl

[6] Thacker H. B., Rev. Mod. Phys., 53:2 (1981), 253–286 | DOI | MR

[7] Benfatto G., Gallavotti G., Nikolo F., Comm. Math. Phys., 83:3 (1982), 386 | DOI | MR

[8] Nikolo F., Comm. Math. Phys., 88:4 (1983), 581–600 | DOI | MR

[9] Gilerak R., J. Math. Phys., 27:12 (1986), 2892–2902 | DOI | MR

[10] McBryan O. A., Comm. Math. Phys., 61:3 (1978), 275–284 | DOI | MR

[11] English H., Repts. Math. Phys., 18:3 (1980), 387–397 | DOI | MR

[12] Zarembo K. L., TMF, 91:3 (1992), 411–417 | MR

[13] Streater R. F., Wilde J. F., Comm. Math. Phys., 17:1 (1970), 21–32 | DOI | MR | Zbl

[14] Hoegh-Krohn R., Comm. Math. Phys., 17:3 (1970), 179–193 | DOI | MR | Zbl

[15] Albeverio S., Hoegh-Krohn R., Comm. Math. Phys., 30:3 (1973), 171–200 | DOI | MR

[16] Feinman R., Khibs A., Kvantovaya mekhanika i integraly po traektoriyam, Mir, M., 1968 | MR

[17] Jessen B., Acta Math., 63 (1934), 249–323 | DOI | MR | Zbl

[18] Dub Dzh. L., Veroyatnostnye protsessy, IL, M., 1956 | MR

[19] Kirillov A. I., TMF, 91:3 (1992), 377–395 | MR

[20] Kirillov A. I., TMF, 93:2 (1992), 249–263 | MR

[21] Osterwalder K., Schrader R., Comm. Math. Phys., 42:3 (1975), 281–305 | DOI | MR | Zbl

[22] Glimm Dzh., Dzhaffe A., Matematicheskie metody kvantovoi fiziki. Podkhod s ispolzovaniem funktsionalnykh integralov, Mir, M., 1984 | MR | Zbl

[23] Vakhaniya N. N., Tarieladze V. I., Chobanyan S. A., Veroyatnostnye raspredeleniya v banakhovykh prostranstvakh, Nauka, M., 1985 | MR | Zbl

[24] Skorokhod A. V., Integrirovanie v gilbertovom prostranstve, Nauka, M., 1975

[25] Konstruktivnaya kvantovaya teoriya polya, Sb. statei. Per. s angl., Seriya Matematika. Novoe v zarubezhnoi nauke, 6, ed. V. N. Sushko, Mir, M., 1977 | MR

[26] Gelfand I. M., Vilenkin N. Ya., Obobschennye funktsii. Vyp. 4. Nekotorye primeneniya garmonicheskogo analiza. Osnaschennye gilbertovy prostranstva, Fizmatgiz, M., 1961 | MR

[27] Khasminskii R. Z., Ustoichivost sistem differentsialnykh uravnenii pri sluchainykh vozmuscheniyakh ikh parametrov, Nauka, M., 1969 | MR