The Clebsch–Gordan coefficients for the quantum algebra $SU_{q}(2)$
Teoretičeskaâ i matematičeskaâ fizika, Tome 98 (1994) no. 1, pp. 3-11 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A simple method for studying the Clebsch–Gordan coefficients of the quantum alge-bra $su_{q}(2)$ is discussed.
@article{TMF_1994_98_1_a0,
     author = {N. M. Atakishiyev and S. K. Suslov},
     title = {The {Clebsch{\textendash}Gordan} coefficients for the quantum algebra $SU_{q}(2)$},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {3--11},
     year = {1994},
     volume = {98},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1994_98_1_a0/}
}
TY  - JOUR
AU  - N. M. Atakishiyev
AU  - S. K. Suslov
TI  - The Clebsch–Gordan coefficients for the quantum algebra $SU_{q}(2)$
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1994
SP  - 3
EP  - 11
VL  - 98
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1994_98_1_a0/
LA  - ru
ID  - TMF_1994_98_1_a0
ER  - 
%0 Journal Article
%A N. M. Atakishiyev
%A S. K. Suslov
%T The Clebsch–Gordan coefficients for the quantum algebra $SU_{q}(2)$
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1994
%P 3-11
%V 98
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1994_98_1_a0/
%G ru
%F TMF_1994_98_1_a0
N. M. Atakishiyev; S. K. Suslov. The Clebsch–Gordan coefficients for the quantum algebra $SU_{q}(2)$. Teoretičeskaâ i matematičeskaâ fizika, Tome 98 (1994) no. 1, pp. 3-11. http://geodesic.mathdoc.fr/item/TMF_1994_98_1_a0/

[1] Kulish P. P., Reshetikhin N. Yu., Zap. nauchn. seminarov LOMI, 101, 1981, 101–110 | MR

[2] Sklyanin E. K., Funkts. analiz i ego prilozh., 16:4 (1982), 27–34 | MR | Zbl

[3] Drinfeld V. G., DAN SSSR, 281:5 (1985), 1060–1064 | MR

[4] Jimbo M., Lett. Math. Phys., 10 (1985), 63–69 ; 11 (1986), 247–252 | DOI | MR | Zbl | DOI | MR | Zbl

[5] Manin Yu. I., Quantum groups and non-commutative geometry, Centre de Recherches Mathematiques, Montreal, 1988 | MR | Zbl

[6] Rosso M., Commun. Math. Phys., 117:4 (1988), 581–593 | DOI | MR | Zbl

[7] Kirillov A. N., Reshetikhin N. Yu., Infinite-dimensional Lie algebras and groups (Luminy-Marseille, 1988), Adv. Ser. Math. Phys., 7, World Sci. Publ., 1989, 285–339 | MR

[8] Masuda T., Mimachi K., Nakagami Y., Nuomi M., Ueno K., C. R. Acad. Sci. Paris Sér. I, 307 (1988), 559–564 | MR | Zbl

[9] Vaksman L. L., Soibelman Ya. S., Funkts. analiz i ego prilozh., 22:3 (1988), 1–14 | MR

[10] Vaksman L. L., DAN SSSR, 306:2 (1989), 269–271 | MR | Zbl

[11] Nomura M., J. Math. Phys., 30:10 (1989), 2397–2405 | DOI | MR | Zbl

[12] Koornwinder T. H., Proc. Konin. Neder. Akad. Wetensch., Series A, 92:1 (1989), 97–117 | MR

[13] Koelink H. T., Koornwinder T. H., Proc. Konin. Neder. Akad. Wetensch., Serie A, 92:4 (1989), 443–456 | MR

[14] Hou Bo-Yu, Hou Bo-Yuan, Ma Zhong-Qi, Commun. Theor. Phys., 13 (1990), 181–198 ; 341–354 | DOI

[15] Ruegg H., J. Math. Phys., 31:5 (1990), 1085–1087 | DOI | MR | Zbl

[16] Kachurik I. I., Klimyk A. U., J. Phys. A: Math. Gen., 24:17 (1991), 4009–4015 | DOI | MR | Zbl

[17] Biedenharn L. C., Lohe M. A., Lecture Notes in Physics, 379, Springer-Verlag, Berlin, 1991, 193–206 | MR

[18] Curtright T. L., Ghandour G. I., Zachos C. K., J. Math. Phys., 32:3 (1991), 676–688 | DOI | MR | Zbl

[19] Rajeswari V., Srinivasa Rao K., J. Phys. A: Math. Gen., 24:16 (1991), 3761–3780 | DOI | MR | Zbl

[20] Maekawa T., J. Math. Phys., 32:10 (1991), 2598–2604 | DOI | MR | Zbl

[21] Smirnov Yu. F., Tolstoi V. H., Kharitonov Yu. I., YaF, 53:4 (1991), 959–980 ; 6, 1746–1771 | MR

[22] Macfarlane A. J., J. Phys. A: Math. Gen., 22:21 (1989), 4581–4588 | DOI | MR | Zbl

[23] Biedenharn L. C., J. Phys. A: Math. Gen., 22:18 (1989), L873–L878 | DOI | MR | Zbl

[24] Atakishiev N. M., Suslov C. K., TMF, 85:1 (1990), 64–73 | MR | Zbl

[25] Kulish P. P. , Damaskinsky E. V., J. Phys. A: Math. Gen., 23 (1990), L415–L419 | DOI | MR | Zbl

[26] Kagramanov E. D., Mir-Kasimov R. M., Nagiyev Sh. M., J. Math. Phys., 31:7 (1990), 1733–1738 | DOI | MR | Zbl

[27] Atakishiev N. M., Suslov C. K., TMF, 87:1 (1991), 154–156 | MR | Zbl

[28] Floreanini R., Vinet L., Lett. Math. Phys., 22 (1991), 45 | DOI | MR | Zbl

[29] Van der Jeugt J., Lett. Math. Phys., 24 (1992), 267–274 | DOI | MR | Zbl

[30] Zhedanov A. S., TMF, 94:2 (1993), 307–315 | MR | Zbl

[31] Atakishiyev N. M., Frank A., Wolf K. B., “Approximation on a finite set of points through Kravchuk functions”, Rev. Mexicana Fis., 40:3 (1994), 366–377 | MR | Zbl

[32] Askey R., Suslov S. K., Preprints IAE-5613/1 and IAE-5634/1, Russian Research Centre "Kurchatov Institute", Moscow, 1993

[33] Floreanini R., Vinet L., “Automorphisms of the $q$-oscillator algebra and basic orthogonal polynomials”, Phys. Lett. A, 180:6 (1993), 393–401 | DOI | MR

[34] Varshalovich D. A., Moskalev A. I., Khersonskii V. K., Kvantovaya teoriya uglovogo momenta, Nauka, L., 1975

[35] Bidenkharn L., Lauk Dzh., Uglovoi moment v kvantovoi fizike, t. 1,2, Mir, M., 1984

[36] Smorodinskii Ya. A., Shelepin A. L., Shelepin L. A., UFN, 162:12 (1992), 1–95 | DOI

[37] Nikiforov A. F., Suslov S. K., Uvarov V. B., Klassicheskie ortogonalnye polinomy diskretnoi peremennoi, Nauka, M., 1985 | MR

[38] Gasper G., Rahman M., Basic Hypergeometric Series, Cambridge University Press, Cambridge, 1990 ; Gasper Dzh., Rakhman M., Bazisnye gipergeometricheskie ryady, Mir, M., 1993 | MR | Zbl | MR | Zbl