The central two-point connection problem of Heun's class of differential equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 101 (1994) no. 3, pp. 360-368 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Boundary-value problems of ordinary, linear, homogeneous second-order differential equations belong to the most important and thus well-investigated problems in mathematical physics. This statement is true only as long asirregular singularities of the differential equation at hand are not involved. If singular points of irregular type enter the problem one will hardly find a systematic investigation of such a topic from a practical point of view. This paper is devoted to an outline of an approach to boundary-value problems of the class of Heun's differential equation when irregular singularities may be located at the endpoints of the relevant interval. We present an approach to the central two-point connection problem for all of these equations in a quite uniform manner. The essential point is an investigation of the Birkhoff sets of irregular difference equations, which, on the one hand, gives a detailed insight into the structure of the singularities of the underlying differential equation and, on the other hand, yields the basis of quite convenient algorithms for numerical investigations of the boundary values.
@article{TMF_1994_101_3_a3,
     author = {W. Lay},
     title = {The central two-point connection problem of {Heun's} class of differential equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {360--368},
     year = {1994},
     volume = {101},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1994_101_3_a3/}
}
TY  - JOUR
AU  - W. Lay
TI  - The central two-point connection problem of Heun's class of differential equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1994
SP  - 360
EP  - 368
VL  - 101
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1994_101_3_a3/
LA  - ru
ID  - TMF_1994_101_3_a3
ER  - 
%0 Journal Article
%A W. Lay
%T The central two-point connection problem of Heun's class of differential equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1994
%P 360-368
%V 101
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1994_101_3_a3/
%G ru
%F TMF_1994_101_3_a3
W. Lay. The central two-point connection problem of Heun's class of differential equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 101 (1994) no. 3, pp. 360-368. http://geodesic.mathdoc.fr/item/TMF_1994_101_3_a3/

[1] Bieberbach L., Theorie gawöhnlicher Differentialgleichungen, second edition, Springer, Berlin–Heidelberg–New York, 1965 | MR | Zbl

[2] Miller J. C. P., Proc. Cambridge Philos. Soc., 48 (1952), 428–435 | DOI | MR | Zbl

[3] Ince E. L., Ordinary Differential Equations, Dover Publications, New York, 1956 | MR

[4] Heun Equation, ed. A. Ronveaux, Oxford University Press, Oxford, New York, in press | Zbl

[5] Meixner J., Schäfke F. W., Mathieu Funktionen und Sphäroidfunktionen, Springer, Berlin–Heidelberg, 1953

[6] Komarov I. V., Ponomarev L. I., Slavyanov S. Yu., Spheroidal and Coulomb Spheroidal Functions, Nauka, Moskow, 1976 | MR | Zbl

[7] Mennicken R., Arch. Math., 16 (1965), 452–464 | DOI | MR | Zbl

[8] Schmidt D., Thesis, Köln, 1970

[9] Schmidt D., Arch. Rat. Mech. Anal., 31(4) (1968), 322–330 | DOI | MR | Zbl

[10] Schäfk R., SIAM J. Math. Anal., 15(2) (1984), 253–271 | DOI | MR | Zbl

[11] Centennial Workshop on Heun's Equation – Theory and Applications, eds. A. Seeger, W. Lay, Max–Planck–Institut für Metallforschung Institut für Physik, Stuttgart, 1990

[12] Chandrasekhar S., The Mathematical Theory of Black Holes, Oxford University Press, Oxford–New York, 1983 | MR | Zbl

[13] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher Transcendental Functions, v. III, McGraw-Hill, New York–Toronto–London, 1955 | Zbl

[14] Jaffé G., Z. Phys., 87 (1933), 535–544 | DOI

[15] Perron O., J. reine und angrew. Math., 137(1) (1909), 6–64 | MR | Zbl

[16] Perron O., Acta Math., 34 (1910), 109–137 | DOI | MR

[17] Wimp J., Computations with Recurrence Relations, Pitman Advanced Publishing Program, Boston–London–Melbourne, 1984 | MR | Zbl

[18] Adams C. R., Trans. Amer. Math. Soc., 30 (1928), 507–541 | DOI | MR | Zbl

[19] Birkhoff G. D., Acta Math., 54 (1930), 205–246 | DOI | MR | Zbl

[20] Abel N. H., J. reine und angew. Math., 1 (1826), 311 ; cited in book: K. Knopp, Theorie und Anwendungen der unendlichen Reihen, fifth edition, Springer, Berlin–Heidelberg–New York, 1964, 179 | DOI | MR | Zbl | MR

[21] Weierstrass K., J. reine und angew. Math., 51 (1856), 29 ; cited in book: K. Knopp, Theorie und Anwendungen der unendlichen Reihen, fifth edition, Springer, Berlin–Heidelberg–New York, 1964, 412 | MR | MR

[22] Stolz O., Z. Math. Phys., 20 (1875), 369; cited in book: K. Knopp, Theorie und Anwendungen der unendlichen Reihen, fifth edition, Springer, Berlin–Heidelberg–New York, 1964 | MR

[23] Knopp K., Theorie und Anwendungen der unendlichen Reihen, fifth edition, Springer, Berlin–Heidelberg–New York, 1964 | MR | Zbl