Multidimensional cosmological solutions of Friedmann type
Teoretičeskaâ i matematičeskaâ fizika, Tome 101 (1994) no. 3, pp. 458-466
Cet article a éte moissonné depuis la source Math-Net.Ru
The generalization of cosmological models of Friedmann type (the $t=\operatorname {const}$ section is a manifold of constant curvature) to the case of an arbitrary number $n$ of spatial dimensions with allowance for the $\Lambda$ term is considered. Solutions are obtained in the integrable cases, in particular, for the distinguished value $n=2$. For $n\geq 4$ it is shown that the qualitative picture of the evolution is close to the ordinary scenario with $n=3$.
@article{TMF_1994_101_3_a13,
author = {G. S. Sharov},
title = {Multidimensional cosmological solutions of {Friedmann} type},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {458--466},
year = {1994},
volume = {101},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1994_101_3_a13/}
}
G. S. Sharov. Multidimensional cosmological solutions of Friedmann type. Teoretičeskaâ i matematičeskaâ fizika, Tome 101 (1994) no. 3, pp. 458-466. http://geodesic.mathdoc.fr/item/TMF_1994_101_3_a13/
[1] Melnikov V. N., Itogi nauki i tekhniki. Ser. Klassich. teoriya polya i teoriya gravit., 1, 1991, 49–110
[2] Ivashchuk V. D., Melnikov V. N., Phys. Lett. A, 136 (1989), 465–467 | DOI | MR
[3] Ivashchuk V. D., Phys. Lett. A, 170 (1992), 16–19 | DOI | MR
[4] Ivaschuk V. D., Melnikov V. N., TMF, 98:2 (1994), 312–319 | MR | Zbl
[5] Sakharov A. D., ZhETF, 78:2(8) (1984), 375–383
[6] Linde A. D., Phys. ser. T, 1991, no. 36, 30–54 | DOI | MR | Zbl
[7] Saslaw W. S., Monthly Not. Royal Astron. Soc., 179:3 (1977), 659–662 | DOI