Multidimensional cosmological solutions of Friedmann type
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 101 (1994) no. 3, pp. 458-466
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The generalization of cosmological models of Friedmann type (the $t=\operatorname {const}$ section is a manifold of constant curvature) to the case of an arbitrary number $n$ of spatial dimensions with allowance for the $\Lambda$ term is considered. Solutions are obtained in the integrable cases, in particular, for the distinguished value $n=2$. For $n\geq 4$  it is shown that the qualitative picture of the evolution is close to the ordinary scenario with $n=3$.
			
            
            
            
          
        
      @article{TMF_1994_101_3_a13,
     author = {G. S. Sharov},
     title = {Multidimensional cosmological solutions of {Friedmann} type},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {458--466},
     publisher = {mathdoc},
     volume = {101},
     number = {3},
     year = {1994},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1994_101_3_a13/}
}
                      
                      
                    G. S. Sharov. Multidimensional cosmological solutions of Friedmann type. Teoretičeskaâ i matematičeskaâ fizika, Tome 101 (1994) no. 3, pp. 458-466. http://geodesic.mathdoc.fr/item/TMF_1994_101_3_a13/
