@article{TMF_1994_101_2_a8,
author = {S. V. Frolov},
title = {The scattering on an isolate defect in honeycomb lattice {\textendash} an explicitely solvable},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {272--281},
year = {1994},
volume = {101},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1994_101_2_a8/}
}
S. V. Frolov. The scattering on an isolate defect in honeycomb lattice – an explicitely solvable. Teoretičeskaâ i matematičeskaâ fizika, Tome 101 (1994) no. 2, pp. 272-281. http://geodesic.mathdoc.fr/item/TMF_1994_101_2_a8/
[1] Kittel Ch., Kvantovaya teoriya tverdykh tel, Nauka, M., 1967
[2] Blandin A., J. Phys. et'e Radium, 22 (1961), 507–518 | DOI | Zbl
[3] Mizes H. A., Foster J. S., Science, 244 (1989), 559–562 | DOI
[4] Probst O., Ackermann J., Graftröm S., Kowalsky J., Neutmann R., Neitzert M., Wortge M., Superstructures in the vicinity of heavy-ion induced defects, observed by scanning tunneling microscopy, GSI Sci. report, 1992
[5] Evstratov V. V., Pavlov B. S., “Lattice models of solids”, Ideas and methods in quantum and statistical physics (Oslo, 1988), Cambridge Univ. Press, Cambridge, 1992, 212–226 | MR | Zbl
[6] Khodakovskii A. M., Model dvumernoi reshetki s vnutrennei strukturoi, diplomnaya rabota vypusknika kafedry matematicheskoi fiziki fizicheskogo fakulteta S.-Peterburgskogo universiteta 1992–1993 goda vypuska | Zbl
[7] Horiguchi T., J. Math. Phys., 13:9 (1972), 1411–1419 | DOI | MR
[8] Kueit F., “Vakuumnoe tunnelirovanie: novaya metodika v mikroskopii”, Fizika za rubezhom, ser. A, Mir, M., 1988
[9] Fedoryuk M. V., Asimptotika: integraly i ryady, Nauka, M., 1987 | MR