Method of anomalous Green's functions: Antiferromagnetism in the Hubbard model on a triangular lattice
Teoretičeskaâ i matematičeskaâ fizika, Tome 101 (1994) no. 2, pp. 294-303 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A method is proposed for describing antiferromagnetic and ferromagnetic states on a triangular lattice in the formalism of anomalous temperature-dependent Green's functions, for which equations of Dyson–Gor'kov type are formulated. These equations are solved in the Hartree approximation, and self-consistency equations are obtained for the order parameters. Finally, the connection between the considered theory and experiment is discussed.
@article{TMF_1994_101_2_a10,
     author = {K. N. Il'inskii and V. N. Popov},
     title = {Method of anomalous {Green's} functions: {Antiferromagnetism} in the {Hubbard} model on a~triangular lattice},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {294--303},
     year = {1994},
     volume = {101},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1994_101_2_a10/}
}
TY  - JOUR
AU  - K. N. Il'inskii
AU  - V. N. Popov
TI  - Method of anomalous Green's functions: Antiferromagnetism in the Hubbard model on a triangular lattice
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1994
SP  - 294
EP  - 303
VL  - 101
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1994_101_2_a10/
LA  - ru
ID  - TMF_1994_101_2_a10
ER  - 
%0 Journal Article
%A K. N. Il'inskii
%A V. N. Popov
%T Method of anomalous Green's functions: Antiferromagnetism in the Hubbard model on a triangular lattice
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1994
%P 294-303
%V 101
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1994_101_2_a10/
%G ru
%F TMF_1994_101_2_a10
K. N. Il'inskii; V. N. Popov. Method of anomalous Green's functions: Antiferromagnetism in the Hubbard model on a triangular lattice. Teoretičeskaâ i matematičeskaâ fizika, Tome 101 (1994) no. 2, pp. 294-303. http://geodesic.mathdoc.fr/item/TMF_1994_101_2_a10/

[1] Gekht R. S., UFN, 159:2 (1989), 261 | DOI

[2] Kawamura H., J. Appl. Phys., 63 (1988), 3086 | DOI

[3] Antonenko A. A., Sokolov A. I., Proceeding of the International Conference “Renormalization Group–91” Singapore: World Scientific, 1991.

[4] Silin V. P., Fizika mnogochastichnykh sistem, 1984, no. 6, 37

[5] Kondratev A. S., Uzdin V. M., Elektronnaya zhidkost magnitouporyadochennykh metallov, LGU, Leningrad, 1988

[6] Jayaprakash C., Krishnamurhy H. R., Sarker S., Wenzel W., Europhys. Lett., 15 (1991), 625 | DOI

[7] Pinettes C., Lacroix C., Solid State Comm., 85:7 (1993), 565 | DOI

[8] Fujita M., Nakanashi T., Machida K., Phys. Rev. B, 45 (1992), 2190 | DOI

[9] Popov V. N., Antiferromagnetism and superconductivity in the Hubbard model with repulsive interaction, LOMI preprints E-3-90 | MR

[10] Abrikosov A. A., Gorkov L. P., Dzyaloshinskii I. E., Metody kvantovoi teorii polya v statisticheskoi fizike, GIFML, M., 1962 | MR

[11] Popov V. N., Kontinualnye integraly v kvantovoi teorii polya i statisticheskoi fizike, Atomizdat, M., 1976 | MR

[12] Gomonaj E. V., L'vov V. A., Theory ofphase transition and piezomagnetic effect in noncollinear $Mn_3AgN$ antiferromagnet, preprint ITP-91-72E, ITP, Kiev, 1991

[13] Fruchart D., Bertaut E. F., Madar R., Fruchart R., Solid State Comm., 9 (1971), 1793 | DOI