Exact calculability, semigroup of representations, and the stability property for representations of the algebra of functions on the quantum group $SU_{q}(2)$
Teoretičeskaâ i matematičeskaâ fizika, Tome 101 (1994) no. 2, pp. 163-178 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An operation of a coproduct of representations of a bialgebra is defined. The coproduct operation for representations of the Hopf algebra of functions on the quantum group $SU_{q}(2)$ is investigated. A notion of a stable representation $\Pi$ is introduced. This means that the representation $\Pi$ is invariant under coproduct by arbitrary representation. Formula for the trace in the representation $\Pi$ is given. The invariant integral of Woronovich on $SU_{q}(2)$ will take the form $\int f d\mu = (1-q^{2}){\rm tr}\,(fcc^{*})$.
@article{TMF_1994_101_2_a0,
     author = {S. V. Kozyrev},
     title = {Exact calculability, semigroup of representations, and the stability property for representations of the algebra of functions on the quantum group $SU_{q}(2)$},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {163--178},
     year = {1994},
     volume = {101},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1994_101_2_a0/}
}
TY  - JOUR
AU  - S. V. Kozyrev
TI  - Exact calculability, semigroup of representations, and the stability property for representations of the algebra of functions on the quantum group $SU_{q}(2)$
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1994
SP  - 163
EP  - 178
VL  - 101
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1994_101_2_a0/
LA  - ru
ID  - TMF_1994_101_2_a0
ER  - 
%0 Journal Article
%A S. V. Kozyrev
%T Exact calculability, semigroup of representations, and the stability property for representations of the algebra of functions on the quantum group $SU_{q}(2)$
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1994
%P 163-178
%V 101
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1994_101_2_a0/
%G ru
%F TMF_1994_101_2_a0
S. V. Kozyrev. Exact calculability, semigroup of representations, and the stability property for representations of the algebra of functions on the quantum group $SU_{q}(2)$. Teoretičeskaâ i matematičeskaâ fizika, Tome 101 (1994) no. 2, pp. 163-178. http://geodesic.mathdoc.fr/item/TMF_1994_101_2_a0/

[1] Drinfeld V. D., Zapiski nauchnykh sem. LOMI, 155, 1986, 19

[2] Woronowich S. L., Comm. Math. Phys., 111:4 (1987), 613 ; Publ. RIMS Kyoto Univ., 23, 1986, 117 | DOI | MR | DOI

[3] Faddeev L. D., Reshetikhin N. Yu., Takhtadzhyan L. A., Algebra i analiz, 1:1 (1988), 178–206 | MR | Zbl

[4] Masuda T., Mimachi K., Nakagami Y., Noumi M., Ueno K., J. Func. Anal., 99:2 (1991), 357–387 | DOI | MR

[5] Vaksman L. L., Soibelman Ya. E., Funkts. analiz i ego prilozh., 22:3 (1988), 1 | MR

[6] Faddeev L. D., Takhtadzhyan L. A., UMN, 34:5 (1979), 13–63 | MR

[7] Arefeva I. Ya., Parthasarathy R., Viswanathan K. S., Volovich I. V., Coherent States, Dynamics and Semiclassical Limit on Quantum Groups, preprint SFU-HEP-108-93, Simon Fraser University, Canada, 1993 | MR

[8] Sakai S., $C^*$-algebras and $W^*$-algebras, Springer-Verlag, 1971 | MR | Zbl