Pining effect in Pierles doped systems with deviation from half-filling of energy band
Teoretičeskaâ i matematičeskaâ fizika, Tome 101 (1994) no. 1, pp. 110-122
Voir la notice de l'article provenant de la source Math-Net.Ru
A study is made of the effect of deviation from half-filling of the energy band ($\mu \ne 0$) on the Fröhlich collective mode in onedimensional impurity systems. A low impurity concentration is considered, and the infinite series of impurity scattering is taken into account self-consistently in the determination of the collective mode Green's function. The conductivity $\sigma (\omega)$ is found in terms of this Green's function, and an analytic expression is obtained for $\sigma (\omega)$ at $\omega \sim \omega _T$ ($\omega _T$ is the pinning frequency). It is shown that for the ratio $\operatorname {Re}\frac {\sigma (\omega)}{\sigma _{\max}}$ a universal formula arises. It differs from the results of Kurihara in the expression for $\omega _T$, which contains an essential dependence on $\mu$ in the incommensurate state of the charge density wave. It is also shown that the width of the peak in the dependence $\sigma (\omega)$ and its position increase with increasing $\mu$.
@article{TMF_1994_101_1_a9,
author = {M. E. Palistrant},
title = {Pining effect in {Pierles} doped systems with deviation from half-filling of energy band},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {110--122},
publisher = {mathdoc},
volume = {101},
number = {1},
year = {1994},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1994_101_1_a9/}
}
TY - JOUR AU - M. E. Palistrant TI - Pining effect in Pierles doped systems with deviation from half-filling of energy band JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1994 SP - 110 EP - 122 VL - 101 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1994_101_1_a9/ LA - ru ID - TMF_1994_101_1_a9 ER -
M. E. Palistrant. Pining effect in Pierles doped systems with deviation from half-filling of energy band. Teoretičeskaâ i matematičeskaâ fizika, Tome 101 (1994) no. 1, pp. 110-122. http://geodesic.mathdoc.fr/item/TMF_1994_101_1_a9/