Pining effect in Pierles doped systems with deviation from half-filling of energy band
Teoretičeskaâ i matematičeskaâ fizika, Tome 101 (1994) no. 1, pp. 110-122 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A study is made of the effect of deviation from half-filling of the energy band ($\mu \ne 0$) on the Fröhlich collective mode in onedimensional impurity systems. A low impurity concentration is considered, and the infinite series of impurity scattering is taken into account self-consistently in the determination of the collective mode Green's function. The conductivity $\sigma (\omega)$ is found in terms of this Green's function, and an analytic expression is obtained for $\sigma (\omega)$ at $\omega \sim \omega _T$ ($\omega _T$ is the pinning frequency). It is shown that for the ratio $\operatorname {Re}\frac {\sigma (\omega)}{\sigma _{\max}}$ a universal formula arises. It differs from the results of Kurihara in the expression for $\omega _T$, which contains an essential dependence on $\mu$ in the incommensurate state of the charge density wave. It is also shown that the width of the peak in the dependence $\sigma (\omega)$ and its position increase with increasing $\mu$.
@article{TMF_1994_101_1_a9,
     author = {M. E. Palistrant},
     title = {Pining effect in {Pierles} doped systems with deviation from half-filling of energy band},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {110--122},
     year = {1994},
     volume = {101},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1994_101_1_a9/}
}
TY  - JOUR
AU  - M. E. Palistrant
TI  - Pining effect in Pierles doped systems with deviation from half-filling of energy band
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1994
SP  - 110
EP  - 122
VL  - 101
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1994_101_1_a9/
LA  - ru
ID  - TMF_1994_101_1_a9
ER  - 
%0 Journal Article
%A M. E. Palistrant
%T Pining effect in Pierles doped systems with deviation from half-filling of energy band
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1994
%P 110-122
%V 101
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1994_101_1_a9/
%G ru
%F TMF_1994_101_1_a9
M. E. Palistrant. Pining effect in Pierles doped systems with deviation from half-filling of energy band. Teoretičeskaâ i matematičeskaâ fizika, Tome 101 (1994) no. 1, pp. 110-122. http://geodesic.mathdoc.fr/item/TMF_1994_101_1_a9/

[1] Frolich H., Proc. Roy. Soc. London A, 223 (1954), 296 | DOI

[2] Lee P. A., Rice T. M., Anderson P. W., Phys. Rev. Lett., 31 (1973), 462 | DOI

[3] Kurihare S., J. Phys. Soc. Japan, 41 (1976), 1488 | DOI

[4] Fukuyama H., J. Phys. Soc. Japan, 41 (1976), 513 | DOI

[5] Leung M. C., Solid State Commun., 15 (1975), 879 | DOI

[6] Timerov P. X., ZhETF, 72:6 (1977), 2309

[7] Palistrant M. E., Pedure I. B., TMF, 65:3 (1985), 435–447 ; 70:3 (1987), 443–453 ; ФНТ, 13 (1987), 460

[8] Palistrant M. E., Chernei M. D., FNT, 13 (1987), 1054; ТМФ, 74:2 (1988), 296–308

[9] Vackalyuk V. M., Palistrant M. E., Padure I. V., J. Phys. Condens. Maher., 2 (1990), 2699 | DOI

[10] Palistrant M. E., Vakalyuk V. M., FNT, 18 (1992), 847

[11] Abrikosov A. A., Gorkov L. P., Dzyaloshinskii I. E., Metody kvantovoi teorii polya v statisticheskoi fizike, Fizmatgiz, M., 1962 | MR | Zbl