Groups of spacetime transformations and symmetries of four-dimensional spacetime. II
Teoretičeskaâ i matematičeskaâ fizika, Tome 101 (1994) no. 1, pp. 136-157 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Groups of spacetime transformations of the second class are constructed. It is shown that the minimum group of spacetime transformations that satisfy the principles of the special theory of $\mathcal D=\mathcal P(2.4)\otimes O(2.4)\otimes O(1.3)$.
@article{TMF_1994_101_1_a11,
     author = {V. P. Belov},
     title = {Groups of spacetime transformations and symmetries of four-dimensional {spacetime.~II}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {136--157},
     year = {1994},
     volume = {101},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1994_101_1_a11/}
}
TY  - JOUR
AU  - V. P. Belov
TI  - Groups of spacetime transformations and symmetries of four-dimensional spacetime. II
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1994
SP  - 136
EP  - 157
VL  - 101
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1994_101_1_a11/
LA  - ru
ID  - TMF_1994_101_1_a11
ER  - 
%0 Journal Article
%A V. P. Belov
%T Groups of spacetime transformations and symmetries of four-dimensional spacetime. II
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1994
%P 136-157
%V 101
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1994_101_1_a11/
%G ru
%F TMF_1994_101_1_a11
V. P. Belov. Groups of spacetime transformations and symmetries of four-dimensional spacetime. II. Teoretičeskaâ i matematičeskaâ fizika, Tome 101 (1994) no. 1, pp. 136-157. http://geodesic.mathdoc.fr/item/TMF_1994_101_1_a11/

[1] Belov V. P., TMF, 100:3 (1994), 458–475 | MR | Zbl

[2] Landau L. D., Lifshits E. M., Teoriya polya, Nauka, M., 1973 | MR

[3] Kartan E., Teoriya spinorov, GIIL, M., 1947

[4] Rumer Yu. B., Fet A. I., Teoriya unitarnoi simmetrii, Nauka, M., 1970 | MR

[5] Belov V. P., YaF, 42:3(9) (1986), 786–796 | MR

[6] Rozenfeld B. A., Neevklidovy geometrii, Gostekhizdat, M., 1955 | MR

[7] Rozenfeld B. A., Mnogomernye prostranstva, Nauka, M., 1966 | MR

[8] Konopelchenko B. G., EChAYa, 8:1 (1977), 135–175 | MR

[9] Golfand Yu. A., Likhtman E. L., Pisma v ZhETF, 13:8 (1971), 452–455

[10] Barut A. O., Kleinert H., Phys. Rev., 161:5 (1967), 1464 | DOI

[11] Barut A. O., Phys. Rev. Lett., 16 (1968), 893 | DOI

[12] Fronsdal C., Rev. of Mod. Phys., 37 (1965), 221 | DOI | MR | Zbl

[13] Rumer Yu. B., DAN SSSR, 191:1,2,3 (1970), 64 | MR

[14] Barut A. O., Phys. Rev., 167:5 (1968), 1527 | DOI

[15] Kyriakopoulos E., Phys. Rev., 177:5 (1969), 2442 | DOI

[16] Böhm A., Phys. Rev., 175:5 (1968), 1766 | DOI

[17] Gyurshi F., Teoriya grupp i elementarnye chastitsy, ed. D. Ivanenko, Mir, M., 1967, 25–113 | MR

[18] Yappa Yu. A., Vestnik LGU, 4:1 (1967), 13 | MR

[19] Bim Dzh,., Erlikh P., Globalnaya lorentseva geometriya, Mir, M., 1985 | MR