Equations of motion of rotating bodies in general relativity in the post-Newtonian approximation
Teoretičeskaâ i matematičeskaâ fizika, Tome 101 (1994) no. 1, pp. 123-135
Voir la notice de l'article provenant de la source Math-Net.Ru
Equations of the translational and rotational motion of two bodies possessing intrinsic angular momentum are obtained by the Einstein–Infeld–Hoffmann method in the post-Newtonian approximation. The results agree with the Kerr metric expressed in a harmonic system of coordinates with symmetry of the spatial components of the metric with respect to its indices and with a conservation law for the total angular momentum that is the sum of the orbital and spin angular momenta, and they give the correct passage to the limit to the equation of motion of a test particle with spin.
@article{TMF_1994_101_1_a10,
author = {M. V. Gorbatenko},
title = {Equations of motion of rotating bodies in general relativity in the {post-Newtonian} approximation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {123--135},
publisher = {mathdoc},
volume = {101},
number = {1},
year = {1994},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1994_101_1_a10/}
}
TY - JOUR AU - M. V. Gorbatenko TI - Equations of motion of rotating bodies in general relativity in the post-Newtonian approximation JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1994 SP - 123 EP - 135 VL - 101 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1994_101_1_a10/ LA - ru ID - TMF_1994_101_1_a10 ER -
%0 Journal Article %A M. V. Gorbatenko %T Equations of motion of rotating bodies in general relativity in the post-Newtonian approximation %J Teoretičeskaâ i matematičeskaâ fizika %D 1994 %P 123-135 %V 101 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_1994_101_1_a10/ %G ru %F TMF_1994_101_1_a10
M. V. Gorbatenko. Equations of motion of rotating bodies in general relativity in the post-Newtonian approximation. Teoretičeskaâ i matematičeskaâ fizika, Tome 101 (1994) no. 1, pp. 123-135. http://geodesic.mathdoc.fr/item/TMF_1994_101_1_a10/