The asymptotic solution of the radiation transfer equation for the optically thick layer with reflected boundaries
Teoretičeskaâ i matematičeskaâ fizika, Tome 100 (1994) no. 3, pp. 424-443 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The asymptotic analysis of the system of equations derived in previous paper is given. This system is equivalent to initial radiation transfer equation but convenient for effective solution in the case of the optically thick layer with general linear boundary conditions of reflection and transition. The obtained asymptotic expressions let us find the explicit form of reflection and transition laws for diffusive radiation in each given situation. The space distribution of radiation intensiveness inside and near the boundaries of the optically thick layer is investigated too.
@article{TMF_1994_100_3_a9,
     author = {V. S. Potapov},
     title = {The asymptotic solution of the radiation transfer equation for the optically thick layer with reflected boundaries},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {424--443},
     year = {1994},
     volume = {100},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1994_100_3_a9/}
}
TY  - JOUR
AU  - V. S. Potapov
TI  - The asymptotic solution of the radiation transfer equation for the optically thick layer with reflected boundaries
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1994
SP  - 424
EP  - 443
VL  - 100
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1994_100_3_a9/
LA  - ru
ID  - TMF_1994_100_3_a9
ER  - 
%0 Journal Article
%A V. S. Potapov
%T The asymptotic solution of the radiation transfer equation for the optically thick layer with reflected boundaries
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1994
%P 424-443
%V 100
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1994_100_3_a9/
%G ru
%F TMF_1994_100_3_a9
V. S. Potapov. The asymptotic solution of the radiation transfer equation for the optically thick layer with reflected boundaries. Teoretičeskaâ i matematičeskaâ fizika, Tome 100 (1994) no. 3, pp. 424-443. http://geodesic.mathdoc.fr/item/TMF_1994_100_3_a9/

[1] Potapov B. C., TMF, 100:2 (1994), 287–302 | MR | Zbl

[2] Fok V. A., Matem. sb., 14(56):1–2 (1944), 3–50 | MR | Zbl

[3] Sobolev V. V., Rasseyanie sveta v atmosferakh planet, Nauka, M., 1972