About the modification of the Painlevé test for systems of nonlinear partial differential equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 100 (1994) no. 3, pp. 367-376 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Following the formulation of [1] the Painlevé test is considered for the 2+1 dimensional model proposed in [2]. It is shown that for the model considered the standard ascending series procedure is correct only on the subset of solutions of the 1+1 dimensional reduction. The modified ascending series procedure is proposed giving a possibility to realize the procedure for a nonreduced case. Basing on this procedure, new representations of the Lax pair and the Backlund transformation are obtaioned. It is shown that the considered system is hamiltonian and some special (soliton's type) solutions are constructed.
@article{TMF_1994_100_3_a4,
     author = {T. I. Garagash},
     title = {About the modification of the {Painlev\'e} test for systems of nonlinear partial differential equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {367--376},
     year = {1994},
     volume = {100},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1994_100_3_a4/}
}
TY  - JOUR
AU  - T. I. Garagash
TI  - About the modification of the Painlevé test for systems of nonlinear partial differential equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1994
SP  - 367
EP  - 376
VL  - 100
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1994_100_3_a4/
LA  - ru
ID  - TMF_1994_100_3_a4
ER  - 
%0 Journal Article
%A T. I. Garagash
%T About the modification of the Painlevé test for systems of nonlinear partial differential equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1994
%P 367-376
%V 100
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1994_100_3_a4/
%G ru
%F TMF_1994_100_3_a4
T. I. Garagash. About the modification of the Painlevé test for systems of nonlinear partial differential equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 100 (1994) no. 3, pp. 367-376. http://geodesic.mathdoc.fr/item/TMF_1994_100_3_a4/

[1] Weiss J., Tabor M., Carnevale G., J. Math. Phys., 24 (1983), 522–526 | DOI | MR | Zbl

[2] Boiti M., Leon J. J.-P., Pempinelli F., Inverse Problems, 3 (1987), 37–49 | DOI | MR | Zbl

[3] Pogrebkov A. K., Inverse Problems, 5 (1989), L7–L10 | DOI | MR | Zbl

[4] Weiss J., J. Math. Phys., 24 (1983), 1405–1413 | DOI | MR | Zbl

[5] Steeb W.-H., Kloke M., Spieker B. M., Z. Naturforsch A, 38 (1983), 1054–1055 | MR | Zbl

[6] Weiss J., J. Math. Phys., 25 (1984), 2226–2235 | DOI | MR | Zbl

[7] Ward R. S., Phys. Lett. A, 102 (1984), 279–282 | DOI | MR

[8] Steeb W.-H., Grauel A., J. Phys. Soc. Japan, 53 (1984), 1901–1903 | DOI | MR

[9] Weiss J., J. Math. Phys., 27 (1986), 1293–1305 | DOI | MR | Zbl

[10] Weiss J., J. Math. Phys., 28 (1987), 2025–2039 | DOI | MR | Zbl

[11] Steeb W.-H., Louw J. A., Physica Scripta, 36 (1987), 11–14 | DOI | MR

[12] Clarkson P. A., Cosgrove C. M., J. Phys. A, 20 (1987), 2003–2024 | DOI | MR | Zbl

[13] Novikov S. P., Manakov S. V., Pitaevskii L. P., Zakharov V. E., Theory ofSolitons. The method of the Inverse Scattering, Plenum, New York, London, 1984 | MR | Zbl

[14] Konopelchenko B. G., Phys. Lett. A, 156 (1991), 221–222 | DOI | MR