The eigenvalues and eigenfunctions of Laplas operator with Neuman boundary conditions in the system of two connected resonators
Teoretičeskaâ i matematičeskaâ fizika, Tome 100 (1994) no. 3, pp. 354-366 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The model Neuman Laplacian in the system of two resonators, connected through a thin channel, is studied. The first terms of the asymptotic expansions of eigenvalues and eigenfunctions by small linking parameter are obtained. An explicit expression for resolvent is derived. The model problem is compared to a real one.
@article{TMF_1994_100_3_a3,
     author = {A. A. Kiselev and B. S. Pavlov},
     title = {The eigenvalues and eigenfunctions of {Laplas} operator with {Neuman} boundary conditions in the system of two connected resonators},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {354--366},
     year = {1994},
     volume = {100},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1994_100_3_a3/}
}
TY  - JOUR
AU  - A. A. Kiselev
AU  - B. S. Pavlov
TI  - The eigenvalues and eigenfunctions of Laplas operator with Neuman boundary conditions in the system of two connected resonators
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1994
SP  - 354
EP  - 366
VL  - 100
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1994_100_3_a3/
LA  - ru
ID  - TMF_1994_100_3_a3
ER  - 
%0 Journal Article
%A A. A. Kiselev
%A B. S. Pavlov
%T The eigenvalues and eigenfunctions of Laplas operator with Neuman boundary conditions in the system of two connected resonators
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1994
%P 354-366
%V 100
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1994_100_3_a3/
%G ru
%F TMF_1994_100_3_a3
A. A. Kiselev; B. S. Pavlov. The eigenvalues and eigenfunctions of Laplas operator with Neuman boundary conditions in the system of two connected resonators. Teoretičeskaâ i matematičeskaâ fizika, Tome 100 (1994) no. 3, pp. 354-366. http://geodesic.mathdoc.fr/item/TMF_1994_100_3_a3/

[1] Voitovich N. N., Kantselenbaum B. Z., Sivov A. N., Obobschennyi metod sobstvennykh kolebanii v teorii difraktsii, Nauka, M., 1977 | MR | Zbl

[2] Hempel R., Seco L. A., Simon B., J. Funct. Annal., 102:2 (1991), 448–483 | DOI | MR | Zbl

[3] Pavlov B. C., Popov I. Yu., Vestn. LGU, 1985, no. 4, 99–102 | MR | Zbl

[4] Dubrovin V. A., Novikov S. P., Fomenko A..T., Sovremennaya geometriya, Nauka, M., 1979 | MR

[5] Pavlov B. C., Usp. matem. nauk, 42:6(258) (1987), 99–131 | MR | Zbl

[6] Pavlov B. C., Popov I. Yu., Vestn. LGU, 1984, no. 13, 116–118 | MR | Zbl

[7] Brown R. M., Hislop P. D., Martinez A., “Eigenvalues and resonances for domains with tubes: Neuman boundary conditions”, J. Differential Equations, 115:2 (1995), 458–476 | DOI | MR | Zbl