@article{TMF_1994_100_3_a3,
author = {A. A. Kiselev and B. S. Pavlov},
title = {The eigenvalues and eigenfunctions of {Laplas} operator with {Neuman} boundary conditions in the system of two connected resonators},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {354--366},
year = {1994},
volume = {100},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1994_100_3_a3/}
}
TY - JOUR AU - A. A. Kiselev AU - B. S. Pavlov TI - The eigenvalues and eigenfunctions of Laplas operator with Neuman boundary conditions in the system of two connected resonators JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1994 SP - 354 EP - 366 VL - 100 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_1994_100_3_a3/ LA - ru ID - TMF_1994_100_3_a3 ER -
%0 Journal Article %A A. A. Kiselev %A B. S. Pavlov %T The eigenvalues and eigenfunctions of Laplas operator with Neuman boundary conditions in the system of two connected resonators %J Teoretičeskaâ i matematičeskaâ fizika %D 1994 %P 354-366 %V 100 %N 3 %U http://geodesic.mathdoc.fr/item/TMF_1994_100_3_a3/ %G ru %F TMF_1994_100_3_a3
A. A. Kiselev; B. S. Pavlov. The eigenvalues and eigenfunctions of Laplas operator with Neuman boundary conditions in the system of two connected resonators. Teoretičeskaâ i matematičeskaâ fizika, Tome 100 (1994) no. 3, pp. 354-366. http://geodesic.mathdoc.fr/item/TMF_1994_100_3_a3/
[1] Voitovich N. N., Kantselenbaum B. Z., Sivov A. N., Obobschennyi metod sobstvennykh kolebanii v teorii difraktsii, Nauka, M., 1977 | MR | Zbl
[2] Hempel R., Seco L. A., Simon B., J. Funct. Annal., 102:2 (1991), 448–483 | DOI | MR | Zbl
[3] Pavlov B. C., Popov I. Yu., Vestn. LGU, 1985, no. 4, 99–102 | MR | Zbl
[4] Dubrovin V. A., Novikov S. P., Fomenko A..T., Sovremennaya geometriya, Nauka, M., 1979 | MR
[5] Pavlov B. C., Usp. matem. nauk, 42:6(258) (1987), 99–131 | MR | Zbl
[6] Pavlov B. C., Popov I. Yu., Vestn. LGU, 1984, no. 13, 116–118 | MR | Zbl
[7] Brown R. M., Hislop P. D., Martinez A., “Eigenvalues and resonances for domains with tubes: Neuman boundary conditions”, J. Differential Equations, 115:2 (1995), 458–476 | DOI | MR | Zbl