Some examples of the generalized Borel transform approach to the complex WKB-method
Teoretičeskaâ i matematičeskaâ fizika, Tome 100 (1994) no. 3, pp. 332-341 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present here the illustration of our general approach and results of [1], for the special case of the second order differential equation.
@article{TMF_1994_100_3_a1,
     author = {V. P. Gurarii and V. I. Matsaev},
     title = {Some examples of the generalized {Borel} transform approach to the complex {WKB-method}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {332--341},
     year = {1994},
     volume = {100},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1994_100_3_a1/}
}
TY  - JOUR
AU  - V. P. Gurarii
AU  - V. I. Matsaev
TI  - Some examples of the generalized Borel transform approach to the complex WKB-method
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1994
SP  - 332
EP  - 341
VL  - 100
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1994_100_3_a1/
LA  - ru
ID  - TMF_1994_100_3_a1
ER  - 
%0 Journal Article
%A V. P. Gurarii
%A V. I. Matsaev
%T Some examples of the generalized Borel transform approach to the complex WKB-method
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1994
%P 332-341
%V 100
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1994_100_3_a1/
%G ru
%F TMF_1994_100_3_a1
V. P. Gurarii; V. I. Matsaev. Some examples of the generalized Borel transform approach to the complex WKB-method. Teoretičeskaâ i matematičeskaâ fizika, Tome 100 (1994) no. 3, pp. 332-341. http://geodesic.mathdoc.fr/item/TMF_1994_100_3_a1/

[1] Gurarii V. P., Matsaev V. I., “The Complex Green-Liouville (WKB) Method And Generalized Borel Transform”, Teor. and Math. Phys., 100:2 (1994), 173–182 | DOI | MR | Zbl

[2] Gurarii V. P., Matsaev V. I., Ruzmatova N. T., Analiticheskie metody v teorii veroyatnostei i v teorii operatorov, Naukova dumka, Kiev, 1990, 145–154 | MR

[3] Gurarii V. P., “The group methods of commutative harmonic analysis”, Commutative harmonic analysis, v. II, Encyclopaedia Math. Sci., 25, Springer, Berlin, 1998, 1–325 | MR

[4] Abramowitz M., Stegun L. A., Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, 55, U. S. Government Printing Office, Washington, 1964 | MR

[5] Aoki T., Kawai T., Takei Y., “The Bender-Wu Analysis and the Voros Theory”, ICM-90 Satellite Conf. Proc. “Special Functions”, Springer-Verlag, 1991, 1–29 | DOI | MR