Some properties of the potential theory operators and and their application to investigation of the basic electro- and magnetostatic equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 100 (1994) no. 3, pp. 323-331 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Some new properties of the double layer potential direct value on $S=\partial \Omega$ operator $B^*$ are proved. In particular the existence in $H^{1/2}(S)$ of a basis, consisting of $B^*$ eigen functions, is shown. Basing on these properties an equivalence of the vector integral equation $$ \alpha \mathbf M(x)+\nabla \int _\Omega \mathbf M(y)\nabla _y|x-y|\,dy=\mathbf H(x), \qquad \alpha \geqslant 0,\quad \Omega \subset R^3,$$ to the known scalar equation with the operator $B^*$ is proved. This vector equation arisis in the integral formulation of the electro- and magnetostatic field problem. The properties of the left-hand side operator and solutions of the equation are investigated.
@article{TMF_1994_100_3_a0,
     author = {V. Ya. Raevskii},
     title = {Some properties of the potential theory operators and and their application to investigation of the basic electro- and magnetostatic equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {323--331},
     year = {1994},
     volume = {100},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1994_100_3_a0/}
}
TY  - JOUR
AU  - V. Ya. Raevskii
TI  - Some properties of the potential theory operators and and their application to investigation of the basic electro- and magnetostatic equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1994
SP  - 323
EP  - 331
VL  - 100
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1994_100_3_a0/
LA  - ru
ID  - TMF_1994_100_3_a0
ER  - 
%0 Journal Article
%A V. Ya. Raevskii
%T Some properties of the potential theory operators and and their application to investigation of the basic electro- and magnetostatic equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1994
%P 323-331
%V 100
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1994_100_3_a0/
%G ru
%F TMF_1994_100_3_a0
V. Ya. Raevskii. Some properties of the potential theory operators and and their application to investigation of the basic electro- and magnetostatic equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 100 (1994) no. 3, pp. 323-331. http://geodesic.mathdoc.fr/item/TMF_1994_100_3_a0/

[1] Khizhnyak N. A., Integralnye uravneniya makroskopicheskoi elektrodinamiki, Naukova dumka, Kiev, 1966 | MR

[2] Raevskii V. Ya., Matematicheskoe issledovanie odnogo klassa zadach elektro-i magnitostatiki, preprint No 5/85, IFM UNTs AN SSSR, Sverdlovsk, 1985

[3] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970 | MR

[4] Friedman M. J., “Mathematical study of the nonlinear singular integral magnetic field equation. I”, SIAM J. Appl. Math., 39:1 (1980), 14–20 | DOI | MR | Zbl

[5] Bykhovskii E. B., Smirnov N. V., Tr. MIAN SSSR, 59, 1960, 5–36 | MR

[6] Friedman M. J., “Mathematical study of the nonlinear singular integral magnetic field equation. III”, SIAM J. Math. Analys, 12:4 (1981), 536–540 | DOI | MR | Zbl

[7] Gyunter M. N., Teoriya potentsiala i ee primenenie k osnovnym zadacham matematicheskoi fiziki, GITTL, M., 1953 | MR

[8] Mazya V. G., Sovremennye problemy matematiki. Fundamentalnye napravleniya, 27, VINITI, M., 1988, 131–228 | MR

[9] Mikhlin S. G., Lektsii po lineinym integralnym uravneniyam, Fizmatgiz, M., 1959 | MR

[10] Mikhlin S. G., Lineinye uravneniya v chastnykh proizvodnykh, Vyssh. shk., M., 1977 | MR

[11] Smirnov V. I., Kurs vysshei matematiki, t. 4, ch. 2, Nauka, M., 1981 | MR

[12] Dedonne Zh., Osnovy sovremennogo analiza, Mir, M., 1984

[13] Dyakin V. V., Raevskii V. Ya., Mat. zametki, 45:2 (1989), 138–140 | MR | Zbl

[14] Faddeev D. K., Vulikh B. Z., Uraltseva N. N., Izbrannye glavy analiza i vysshei algebry, LGU, L., 1981

[15] Kirsch A., “Surface gradients and continuity properties for some integral operators in classical scattering theory”, J. Math. Meth. Appl. Scien., 11 (1989), 789–804 | DOI | MR | Zbl

[16] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1983 | MR

[17] Friedman M. J., Pasciak J. E., “Spectral properties for the magnetization integral operator”, J. Math. Comp., 43:168 (1984), 447–453 | DOI | MR | Zbl

[18] Rektoris K., Variatsionnye metody v matematicheskoi fizike i tekhnike, Mir, M., 1985 | MR | Zbl

[19] Agranovich M. S., “Spektralnye svoistva zadach difraktsii”, dop. k kn.: Voitovich N. N., Katsenelenbaum B. Z., Sivov A.N., Obobschennyi metod sobstvennykh kolebanii v teorii difraktsii, Nauka, M., 1977, 289–413 | MR

[20] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1989 | MR

[21] Dyakin V. V., Raevskii V. Ya., ZhVM i MF, 30:2 (1990), 291–297 | MR

[22] Dieudonne J., “Quasi-hermitian operators”, Proceedings of the International Symposium on Linear Spaces (Jerusalem, 1960), Jerusalem Academic Press, Jerusalem, 1961, 115–122 | MR | Zbl

[23] Egorov Yu. V., Shubin M. A., Sovremennye problemy matematiki. Fundamentalnye napravleniya, 30, VINITI, M., 1988, 5–263