Construction of reflectionless potentials with infinite discrete spectrum
Teoretičeskaâ i matematičeskaâ fizika, Tome 100 (1994) no. 2, pp. 230-247 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate the one-dimensional Schrödinger operator. The condition that the potential be self-similar under Darboux transformation leads to transparent potentials with infinitely many eigenvalues.
@article{TMF_1994_100_2_a6,
     author = {A. Degasperis and A. B. Shabat},
     title = {Construction of reflectionless potentials with infinite discrete spectrum},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {230--247},
     year = {1994},
     volume = {100},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1994_100_2_a6/}
}
TY  - JOUR
AU  - A. Degasperis
AU  - A. B. Shabat
TI  - Construction of reflectionless potentials with infinite discrete spectrum
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1994
SP  - 230
EP  - 247
VL  - 100
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1994_100_2_a6/
LA  - ru
ID  - TMF_1994_100_2_a6
ER  - 
%0 Journal Article
%A A. Degasperis
%A A. B. Shabat
%T Construction of reflectionless potentials with infinite discrete spectrum
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1994
%P 230-247
%V 100
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1994_100_2_a6/
%G ru
%F TMF_1994_100_2_a6
A. Degasperis; A. B. Shabat. Construction of reflectionless potentials with infinite discrete spectrum. Teoretičeskaâ i matematičeskaâ fizika, Tome 100 (1994) no. 2, pp. 230-247. http://geodesic.mathdoc.fr/item/TMF_1994_100_2_a6/

[1] Shabat A., “The infinite-dimensional dressing dynamical system”, Inverse Probl., 8 (1992), 303–308 | DOI | MR | Zbl

[2] Calogero F., Degasperis A., Spectral Transform and Solitons: tools to solve and investigate nonlinear evolution equations, v. 1, North Holland Publ. Co., Amsterdam, 1982 | MR | Zbl

[3] Shabat A. B., “The potentials with vanishing reflection coefficient”, Dynamics of continuos matter., 5 (1970), 130–145 (Russian)

[4] Marchenko V. A., “The Cauchy problem for the KdV equation with non-dcreasing initial data”, What is integrabuity ?, ed. V. A. Zakharov, Springer-Verlag, Berlin, 1991, 273–318 | DOI | MR | Zbl

[5] Veselov A. P., Shabat A. B., “A dressing chain and the spectral theory of the Schrödinger operator”, Funktsional. Anal. i Prilozhen., 27:2 (1993), 1–21, 96 | DOI | MR | Zbl

[6] Ramani A., Grammaticos B., Tamizhmani K. M., “Painlevé analysis and singularity confinement: the ultimate conjecture”, J. Phys. A: Math. Gen., 26 (1993), L53–L58 | DOI | MR | Zbl

[7] Strang G., “Wavelets and dilation equations: a brief introduction”, SIAM Rev., 31 (1989), 614–627 | DOI | MR | Zbl

[8] Degasperis A., Shabat A., “Construction of reflectionless potentials with infinitely many discrete eigenvalues”, Application of Analytic and Geometric Methods to Nonlinear Differential Equations (Exeter, 1992), NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., 413, ed. P. A. Clarkson, Kluwer Acad. Publ., Dordrecht, 1993, 115–123 | MR | Zbl

[9] Kato T., McLeod J. B., “The functional-differential equation $y'(x)=ay(\lambda x)+by(x)$”, Bull. Amer. Math. Soc., 77 (1971), 891–937 | DOI | MR | Zbl