@article{TMF_1994_100_2_a6,
author = {A. Degasperis and A. B. Shabat},
title = {Construction of reflectionless potentials with infinite discrete spectrum},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {230--247},
year = {1994},
volume = {100},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1994_100_2_a6/}
}
TY - JOUR AU - A. Degasperis AU - A. B. Shabat TI - Construction of reflectionless potentials with infinite discrete spectrum JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1994 SP - 230 EP - 247 VL - 100 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_1994_100_2_a6/ LA - ru ID - TMF_1994_100_2_a6 ER -
A. Degasperis; A. B. Shabat. Construction of reflectionless potentials with infinite discrete spectrum. Teoretičeskaâ i matematičeskaâ fizika, Tome 100 (1994) no. 2, pp. 230-247. http://geodesic.mathdoc.fr/item/TMF_1994_100_2_a6/
[1] Shabat A., “The infinite-dimensional dressing dynamical system”, Inverse Probl., 8 (1992), 303–308 | DOI | MR | Zbl
[2] Calogero F., Degasperis A., Spectral Transform and Solitons: tools to solve and investigate nonlinear evolution equations, v. 1, North Holland Publ. Co., Amsterdam, 1982 | MR | Zbl
[3] Shabat A. B., “The potentials with vanishing reflection coefficient”, Dynamics of continuos matter., 5 (1970), 130–145 (Russian)
[4] Marchenko V. A., “The Cauchy problem for the KdV equation with non-dcreasing initial data”, What is integrabuity ?, ed. V. A. Zakharov, Springer-Verlag, Berlin, 1991, 273–318 | DOI | MR | Zbl
[5] Veselov A. P., Shabat A. B., “A dressing chain and the spectral theory of the Schrödinger operator”, Funktsional. Anal. i Prilozhen., 27:2 (1993), 1–21, 96 | DOI | MR | Zbl
[6] Ramani A., Grammaticos B., Tamizhmani K. M., “Painlevé analysis and singularity confinement: the ultimate conjecture”, J. Phys. A: Math. Gen., 26 (1993), L53–L58 | DOI | MR | Zbl
[7] Strang G., “Wavelets and dilation equations: a brief introduction”, SIAM Rev., 31 (1989), 614–627 | DOI | MR | Zbl
[8] Degasperis A., Shabat A., “Construction of reflectionless potentials with infinitely many discrete eigenvalues”, Application of Analytic and Geometric Methods to Nonlinear Differential Equations (Exeter, 1992), NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., 413, ed. P. A. Clarkson, Kluwer Acad. Publ., Dordrecht, 1993, 115–123 | MR | Zbl
[9] Kato T., McLeod J. B., “The functional-differential equation $y'(x)=ay(\lambda x)+by(x)$”, Bull. Amer. Math. Soc., 77 (1971), 891–937 | DOI | MR | Zbl