Method of solution of the radiation transfer equation for an optically thick layer with reflecting boundaries
Teoretičeskaâ i matematičeskaâ fizika, Tome 100 (1994) no. 2, pp. 287-302 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A method is developed for solving the equations of the theory of radiative transfer that is effective for an optically thick reflecting layer. The essence of the method is to go over in the transfer equation to Laplace transforms and then investigate their analytic properties and eliminate fictitious singularities. Relations are formulated for the boundary values of the intesities; in conjunction with the boundary conditions these form a closed system of linear integral Fredholm equations of the second kind with completely continuous kernels.
@article{TMF_1994_100_2_a10,
     author = {V. S. Potapov},
     title = {Method of solution of the radiation transfer equation for an optically thick layer with reflecting boundaries},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {287--302},
     year = {1994},
     volume = {100},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1994_100_2_a10/}
}
TY  - JOUR
AU  - V. S. Potapov
TI  - Method of solution of the radiation transfer equation for an optically thick layer with reflecting boundaries
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1994
SP  - 287
EP  - 302
VL  - 100
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1994_100_2_a10/
LA  - ru
ID  - TMF_1994_100_2_a10
ER  - 
%0 Journal Article
%A V. S. Potapov
%T Method of solution of the radiation transfer equation for an optically thick layer with reflecting boundaries
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1994
%P 287-302
%V 100
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1994_100_2_a10/
%G ru
%F TMF_1994_100_2_a10
V. S. Potapov. Method of solution of the radiation transfer equation for an optically thick layer with reflecting boundaries. Teoretičeskaâ i matematičeskaâ fizika, Tome 100 (1994) no. 2, pp. 287-302. http://geodesic.mathdoc.fr/item/TMF_1994_100_2_a10/

[1] Chandrasekar S., Perenos luchistoi energii, Inostr. lit., M., 1953

[2] Devison B., Teoriya perenosa neitronov, Atomizdat, M., 1960

[3] Marnuk G. I., Lebedev V. I., Chislennye metody v teorii perenosa neitronov, Nauka, M., 1981 | MR

[4] Germogenova T. A., Lokalnye svoistva reshenii uravneniya perenosa, Nauka, M., 1986 | MR | Zbl

[5] Sobolev V. V., Perenos luchistoi energii v atmosferakh zvezd i planet, GITTL, M., 1956 | MR

[6] Busbridge I. W., Ap. J., 122:2 (1960), 1955 | MR

[7] Mullikin T. W., Astrophys. J., 139 (1964), 379, 1267 ; Carlsted J. L., Mullikin T. W., Astrophys. J. Suppl. ser., 12:113 (1966) | DOI

[8] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1968 | MR | Zbl