@article{TMF_1994_100_2_a1,
author = {V. P. Gurarii and V. I. Matsaev},
title = {The generalized {Borel} transform and {Stokes} multipliers},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {173--182},
year = {1994},
volume = {100},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1994_100_2_a1/}
}
V. P. Gurarii; V. I. Matsaev. The generalized Borel transform and Stokes multipliers. Teoretičeskaâ i matematičeskaâ fizika, Tome 100 (1994) no. 2, pp. 173-182. http://geodesic.mathdoc.fr/item/TMF_1994_100_2_a1/
[1] Hardy G. H., Divergent Series, Clarendon Press, Oxford, 1949 | MR | Zbl
[2] Dingle R. B., Asymptotic Expansions: their Derivation and Interpretation, Academic Press, New York, London, 1973 | MR | Zbl
[3] Voros A., “The return of the quartic oscillator: the complex WKB method”, Ann. Inst. H. Poincaré, 39:3 (1983), 211–238 | MR
[4] Asymptotics beyond all orders, series B: Physics, NATO ASI Series, 284, eds. H. Segur, S. Tanveer, H. Levine, Plenum Press, New York, 1991 | MR | Zbl
[5] Gurarii V. P., Matsaev V. I., “Stokes multipliers for systems of linear ordinary differential equations of first order”, Soviet Math. Dokl., 31:1 (1985), 52–56 | MR
[6] Fröman N., “A method for handling approximate solutions of ordinary linear differential equations”, Arkiv for Fysik B, 31:29 (1966), 445–451 | MR | Zbl
[7] Coddington E. A., Levinson N., Theory of ordinary differential equations, McGraw Hill, New York, 1955 | MR | Zbl
[8] Wasow W., Asymptotic expansions for ordinary differential equations, Wiley, New York, 1965 | MR | Zbl
[9] Goursat E., Cours d'analyse mathematique, tome II, Gauthier-Villars, Paris | MR
[10] Olver F. W. J., Asymptotics and Special Functions, Academic Press, New York, London, 1974 | MR