The generalized Borel transform and Stokes multipliers
Teoretičeskaâ i matematičeskaâ fizika, Tome 100 (1994) no. 2, pp. 173-182
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose a new approach to the complex WKB method for matrix linear differential equations with meromorphic coefficients. The essence of our method which is the further development of the well known Borel summation method (see [1, 2] and also [3, 4]) is the following. It is known that the WKB (formal) solution of equation is presented as a product of some exponential factor with factorially divergent power series. One can construct the one-to-one correspondence between this formal series and some analytical function on Riemann surface. This function is analogous to the classical Borel transform. Many of the properties of the actual solutions can be studied using this transform. In particular one can evaluate the so-called connection coefficients or Stokes multipliers. We shall present the explicit formulae for such generalization of the Borel transform and for evaluation of the Stokes multipliers in the general case. There is a crucial difference between the second order and the third or higher order differential equations which probably was not known so far. Our method could find applications in the scattering and spectral theories. We shall illustrate the details of this approach in our second paper.
@article{TMF_1994_100_2_a1,
     author = {V. P. Gurarii and V. I. Matsaev},
     title = {The generalized {Borel} transform and {Stokes} multipliers},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {173--182},
     year = {1994},
     volume = {100},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1994_100_2_a1/}
}
TY  - JOUR
AU  - V. P. Gurarii
AU  - V. I. Matsaev
TI  - The generalized Borel transform and Stokes multipliers
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1994
SP  - 173
EP  - 182
VL  - 100
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1994_100_2_a1/
LA  - ru
ID  - TMF_1994_100_2_a1
ER  - 
%0 Journal Article
%A V. P. Gurarii
%A V. I. Matsaev
%T The generalized Borel transform and Stokes multipliers
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1994
%P 173-182
%V 100
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1994_100_2_a1/
%G ru
%F TMF_1994_100_2_a1
V. P. Gurarii; V. I. Matsaev. The generalized Borel transform and Stokes multipliers. Teoretičeskaâ i matematičeskaâ fizika, Tome 100 (1994) no. 2, pp. 173-182. http://geodesic.mathdoc.fr/item/TMF_1994_100_2_a1/

[1] Hardy G. H., Divergent Series, Clarendon Press, Oxford, 1949 | MR | Zbl

[2] Dingle R. B., Asymptotic Expansions: their Derivation and Interpretation, Academic Press, New York, London, 1973 | MR | Zbl

[3] Voros A., “The return of the quartic oscillator: the complex WKB method”, Ann. Inst. H. Poincaré, 39:3 (1983), 211–238 | MR

[4] Asymptotics beyond all orders, series B: Physics, NATO ASI Series, 284, eds. H. Segur, S. Tanveer, H. Levine, Plenum Press, New York, 1991 | MR | Zbl

[5] Gurarii V. P., Matsaev V. I., “Stokes multipliers for systems of linear ordinary differential equations of first order”, Soviet Math. Dokl., 31:1 (1985), 52–56 | MR

[6] Fröman N., “A method for handling approximate solutions of ordinary linear differential equations”, Arkiv for Fysik B, 31:29 (1966), 445–451 | MR | Zbl

[7] Coddington E. A., Levinson N., Theory of ordinary differential equations, McGraw Hill, New York, 1955 | MR | Zbl

[8] Wasow W., Asymptotic expansions for ordinary differential equations, Wiley, New York, 1965 | MR | Zbl

[9] Goursat E., Cours d'analyse mathematique, tome II, Gauthier-Villars, Paris | MR

[10] Olver F. W. J., Asymptotics and Special Functions, Academic Press, New York, London, 1974 | MR