Representations of the compact quantum group $SU_q(2)$ and geometrical quantization
Teoretičeskaâ i matematičeskaâ fizika, Tome 100 (1994) no. 2, pp. 163-172 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Souriau–Kostant method of geometrical quantization is used to construct infinite-dimensional irreducible unitary representations of the algebra of functions of the compact quantum group $SU_q(2)$. The generalization to the case of the quantum group $SU_q(n)$ is discussed.
@article{TMF_1994_100_2_a0,
     author = {G. E. Arutyunov},
     title = {Representations of the compact quantum group $SU_q(2)$ and geometrical quantization},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {163--172},
     year = {1994},
     volume = {100},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1994_100_2_a0/}
}
TY  - JOUR
AU  - G. E. Arutyunov
TI  - Representations of the compact quantum group $SU_q(2)$ and geometrical quantization
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1994
SP  - 163
EP  - 172
VL  - 100
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1994_100_2_a0/
LA  - ru
ID  - TMF_1994_100_2_a0
ER  - 
%0 Journal Article
%A G. E. Arutyunov
%T Representations of the compact quantum group $SU_q(2)$ and geometrical quantization
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1994
%P 163-172
%V 100
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1994_100_2_a0/
%G ru
%F TMF_1994_100_2_a0
G. E. Arutyunov. Representations of the compact quantum group $SU_q(2)$ and geometrical quantization. Teoretičeskaâ i matematičeskaâ fizika, Tome 100 (1994) no. 2, pp. 163-172. http://geodesic.mathdoc.fr/item/TMF_1994_100_2_a0/

[1] Faddeev L. D., Reshetikhin N. Yu., Takhtadzhyan L. A., “Kvantovanie grupp Li i algebr Li”, Algebra i analiz, 1 (1989), 178–206 | MR

[2] Drinfeld V. G., “Kvantovye gruppy”, Zap. nauchn. sem. LOMI, 155, 1986, 19

[3] Sklyanin E. K., “O nekotorykh algebraicheskikh strukturakh, svyazannykh s uravneniem Yanga–Bakstera”, Funkts. analiz i ego prilozh., 16:4 (1982), 27–34 | MR | Zbl

[4] Jimbo M., “A $q$-difference analog of $U_q(n)$ and the Yang–Baxter equation”, Lett. Math. Phys., 10 (1985), 63–69 | DOI | MR | Zbl

[5] Woronowicz S. L., “Twisted $SU(2)$ group. An example of noncommutative differential calculus”, Publ. RIMS, 23:1 (1987), 117–181 | DOI | MR | Zbl

[6] Kostant B., “Kvantovanie i unitarnye predstavleniya”, Uspekhi mat. nauk, 28:1 (1973), 163–225 | MR | Zbl

[7] Kirillov A. A., Sovremennye problemy matematiki. Fundamentalnye napravleniya, 4, VINITI, M., 1985, 141 | MR

[8] Kirillov L. L., Elementy teorii predstavlenii, Nauka, M., 1972 | MR

[9] Karasev M. V., Maslov V. P., Nelineinye skobki Puassona. Geometriya i kvantovanie, Nauka, M., 1991 | MR | Zbl

[10] Giiemin V., Sternberg S., Geometricheskie asimptotiki, Mir, M., 1981 | MR

[11] Semenov-Tyan-Shanskii M. A., “Chto takoe klassicheskaya $\tau$-matritsa ?”, Funkts. analiz i ego prilozh., 17:4 (1983), 17 | MR

[12] Semenov-Tyan-Shanskii M. A., “Klassicheskaya $\tau$-matritsa i kvantovanie”, Zap. nauchn. sem. LOMI, 133, 1984, 228 | MR

[13] Semenov-Tian-Shansky M. A., “Dressing transformations and Poisson group actions”, Publ. RIMS, 21:1 (1985), 1237–1260 | DOI | MR

[14] Vaksman L. L., Soibelman Ya. S., “Algebra funktsii na kvantovoi gruppe $SU_q(2)$”, Funkts. analiz i ego prilozh., 22:3 (1988), 1–14 | MR

[15] Soibelman Ya. S., “Neprivodimye predstavleniya algebry funktsii na kvantovoi gruppe $SU(n)$ i kletki Shuberta”, DAN SSSR, 307:1 (1989), 41–45 | MR

[16] Soibelman Ya. S., “Algebra funktsii na kompaktnoi kvantovoi gruppe i ee predstavleniya”, Algebra i analiz, 2:1 (1990), 190–212 | MR | Zbl

[17] Aref'eva I. Ya., Volovich I. V., “Quantum group gauge particles and non-archimedean geometry”, Phys. Lett. B, 264 (1991), 62 | DOI | MR