Quantum integrable systems of particles as gauge theories
Teoretičeskaâ i matematičeskaâ fizika, Tome 100 (1994) no. 1, pp. 97-103 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study quantum integrable systems of interacting particles from the point of view proposed by A. Gorsky and N. Nekrasov. We obtain the Sutherland system by a Hamiltonian reduction of an integrable system on the cotangent bundles to an affine $\hat su(N)$ algebra and show that it coincides with the Yang–Mills theory on a cylinder. We point out that there exists a tower of $2d$ quantum field theories. The top of this tower is the gauged $G/G$ WZW model on a cylinder with an inserted Wilson line in an appropriate representation, which in our approach corresponds to Ruijsenaars' relativistic Calogero model. Its degeneration yields the $2d$ Yang–Mills theory, whose small radius limit is the Calogero model itself. We make some comments about the spectra and eigenstates of the models, which one can get from their equivalence with the field theories. Also we point out some possibilities of elliptic deformations of these constructions.
@article{TMF_1994_100_1_a8,
     author = {A. S. Gorsky and N. Nekrasov},
     title = {Quantum integrable systems of particles as gauge theories},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {97--103},
     year = {1994},
     volume = {100},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1994_100_1_a8/}
}
TY  - JOUR
AU  - A. S. Gorsky
AU  - N. Nekrasov
TI  - Quantum integrable systems of particles as gauge theories
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1994
SP  - 97
EP  - 103
VL  - 100
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1994_100_1_a8/
LA  - ru
ID  - TMF_1994_100_1_a8
ER  - 
%0 Journal Article
%A A. S. Gorsky
%A N. Nekrasov
%T Quantum integrable systems of particles as gauge theories
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1994
%P 97-103
%V 100
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1994_100_1_a8/
%G ru
%F TMF_1994_100_1_a8
A. S. Gorsky; N. Nekrasov. Quantum integrable systems of particles as gauge theories. Teoretičeskaâ i matematičeskaâ fizika, Tome 100 (1994) no. 1, pp. 97-103. http://geodesic.mathdoc.fr/item/TMF_1994_100_1_a8/

[1] A. Gorsky, N. Nekrasov, “Hamiltonian systems of Calogero type and two dimensional Yang-Mills theory”, Nuclear Phys. B, 414:1–2 (1994), 213–238 | DOI | MR | Zbl

[2] A. Gorsky, N. Nekrasov, Relativistic Calogero-Moser model as Gauged WZW Theory, UUITP-31/93

[3] A. Gorsky, N. Nekrasov, Elliptic Calogero Model from Two Dimensional Currents, in preparation

[4] J. A. Minahan, A. P. Polychronakos, Equivalence of two dimensional $QCD$ and the $c=1$ matrix model, preprint CERN-TH-6843/93, UVA-HET-93-02 | MR

[5] S. N. M. Ruijsenaars, CMP, 110 (1987), 191–213 ; S. N. M. Ruijsenaars, H. Schneider, Ann. Phys. (N. Y.), 170 (1986), 370 ; S. N. M. Ruijsenaars, “Finite-Dimensional Soliton Systems”, Integrable and superintegrable systems, ed. B. Kupershmidt, World Scientific, Singapore, 1990, 165 ; J. F. van Diejen, Commuting Difference Operators with Polynomial Eigenfunctions, arXiv: funct-an/9306002 | MR | Zbl | DOI | MR | Zbl | DOI | MR | MR

[6] D. Kazhdan, B. Kostant, S. Sternberg, Comm. on Pure and Appl. Math., 31 (1978), 481–507 | DOI | MR | Zbl

[7] M. Olshanetsky, A. Perelomov, Phys. Peps., 71 (1981), 313 | DOI | MR

[8] G. J. Heckmann, Invent. Math., 98 (1991), 341 ; C. F. Dunkl, Trans. Amer. Math. Soc., 311 (1989) ; E. M. Opdam, Invent. Math., 98 (1989), 1 | DOI | MR | DOI | MR | Zbl | DOI | MR | Zbl

[9] I. Cherednik, RIMS, 742 (1990)

[10] A. Migdal, ZHETP, 69 (1975), 810; V. Rusakov, Mod. Phys. Lett. A, 5 (1990), 693 ; E. Witten, preprint IASSNS-HEP-92/15; D. Gross, W. Taylor, preprint LBL-33458, UCB-PTH-93/02, PUPT-1376 ; D. Gross, W. Taylor, preprint CERN-TH-6843/93, PUPT-1382, LBL-33767, UCB-PTH-93/09 | DOI | MR | Zbl | MR

[11] A. Alexeiev, S. Shatashvili, CMP, 1990

[12] A. Polychronakos, Phys. Rev. Lett., 69 (1992), 703 | DOI | MR | Zbl

[13] D. Bernard, M. Gaudin, D. Haldane, V. Pasquer, SPhT-93-006; G. Felder, A. P. Veselov, ETH, 1993; L. Brink, T. H. Hansson, M. Vassiliev, Phys. Lett. B, 286 (1992) | DOI | MR

[14] J. A. Minahan, A. P. Polychronakos, Interacting Fermions from Two Dimensional $QCD$, arXiv: hep-th/9309044

[15] A. Alexeiev, Integrability in Hamiltonian Chern-Simons theory, arXiv: hep-th/9311074