Between $\widehat {gl}(\infty )$ and $\widehat {sl}_N$ affine algebras I. Geometrical actions
Teoretičeskaâ i matematičeskaâ fizika, Tome 100 (1994) no. 1, pp. 82-96 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the central extended $\hat {gl}(\infty)$ Lie algebra and a set of its subalgebras parametrized by $|q|=1$ which coincides with the embedding of the quantum tori Lie algebras (QTLA) in $\hat {gl}(\infty)$. For $q^N=1$ there exists an ideal and a factor over this ideal is isomorphic to $\hat {sl}_N(z)$ affine algebra. For a generic value $q$ the corresponding subalgebras are dense in $\hat {gl}(\infty)$. Thus they interpolate between $\hat {gl}(\infty)$ and $\hat {sl}_N(z)$ . All these subalgebras are fixed points of automorphisms of $\hat {gl}(\infty)$. Using the automorphisms we construct geometrical actions for the subalgebras starting from the Kirillov–Kostant form and the corresponding geometrical action for $\hat {gl}(\infty)$.
@article{TMF_1994_100_1_a7,
     author = {M. I. Golenishcheva-Kutuzova and D. R. Lebedev and M. A. Olshanetsky},
     title = {Between $\widehat {gl}(\infty )$ and $\widehat {sl}_N$ affine algebras {I.} {Geometrical} actions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {82--96},
     year = {1994},
     volume = {100},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1994_100_1_a7/}
}
TY  - JOUR
AU  - M. I. Golenishcheva-Kutuzova
AU  - D. R. Lebedev
AU  - M. A. Olshanetsky
TI  - Between $\widehat {gl}(\infty )$ and $\widehat {sl}_N$ affine algebras I. Geometrical actions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1994
SP  - 82
EP  - 96
VL  - 100
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1994_100_1_a7/
LA  - ru
ID  - TMF_1994_100_1_a7
ER  - 
%0 Journal Article
%A M. I. Golenishcheva-Kutuzova
%A D. R. Lebedev
%A M. A. Olshanetsky
%T Between $\widehat {gl}(\infty )$ and $\widehat {sl}_N$ affine algebras I. Geometrical actions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1994
%P 82-96
%V 100
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1994_100_1_a7/
%G ru
%F TMF_1994_100_1_a7
M. I. Golenishcheva-Kutuzova; D. R. Lebedev; M. A. Olshanetsky. Between $\widehat {gl}(\infty )$ and $\widehat {sl}_N$ affine algebras I. Geometrical actions. Teoretičeskaâ i matematičeskaâ fizika, Tome 100 (1994) no. 1, pp. 82-96. http://geodesic.mathdoc.fr/item/TMF_1994_100_1_a7/

[1] Date E., Jimbo M., Kashivara M., Miva T., “Transformation Groups for Soliton Equations”, Proceedings of RIMS symposium, eds. Jimbo M., Miva T., World Scientific, 1983, 39–120 | MR

[2] Segal G., Wilson G., “Loop groups and equations of KdV type”, Pub. Math. IHES, 61 (1985), 5–65 | DOI | MR | Zbl

[3] Gerasimov A., Lebedev D., Morozov A., Int. J. Mod. Phys. A, 6 (1991), 977 | DOI | MR | Zbl

[4] Fairlie D., Fletcher P., Zachos C., Phys. Lett. B, 218 (1989), 203 | DOI | MR | Zbl

[5] A. Alekseev, S. L. Shatashvili, Nucl. Phys. B, 323 (1989), 719 | DOI | MR

[6] P. B. Wiegmann, Nucl. Phys. B, 323 (1989), 311 | DOI | MR

[7] B. Rai, V. G. J. Rodgers, Stony Brook preprint ITP-SB-88-84/SU 4228-38

[8] G. W. Delius, P. van Nieuwenhuisen, V. G. J. Rodjers, Int. J. Mod. Phys. A, 5 (1990), 3943 | DOI | MR | Zbl

[9] A. S. Gorsky, M. A. Oshanetsky, K. G. Selivanov, On a Multiorbit Geometrical Action for the Integrable Systems, preprint IC/90/342, 1990

[10] M. A. Olshanetsky, Proceedings of 14 John Hopkins Conference, eds. G. Domokos, Z. Horvath, S. Kovesi-Domokos, World Scientific

[11] A. Alekseev, L. D. Faddeev, S. L. Shatashvili, Journ. of Geom. and Phys., 1 (1989), 3 | Zbl

[12] A. M. Polyakov, P. B. Wiegmann, Phys. Lett. B, 131 (1983), 121 | DOI | MR

[13] A. M. Polyakov, Mod. Phys. Lett. A, 2 (1987), 893 | DOI | MR

[14] J. Avan, A. Jevitsky, Mod. Phys. Lett. A, 7 (1992), 357 | DOI | MR | Zbl

[15] E. Nissimov, S. Pacheva, Theor. Math. Phys., 93 (1992), 273 | DOI | MR | Zbl

[16] K. G. Selivanov, Geometry and Physics on $\omega_\infty$ Orbits, preprint Bonn-HE-93-06

[17] R. Manvelyan, R. Mkrtchan, “Geometrical action for $\omega_\infty$ algebra”, Phys. Lett. B, 311:1–4 (1993), 51–54 | DOI | MR

[18] V. G. Kac, D. H. Peterson, Adv. Math., 53 (1984), 125 | DOI | MR | Zbl

[19] V. G. Knizhnik, Uspekhi Phys. Nauk, 159 (1989), 401 | DOI | MR

[20] V. G. Kac, M. Wakimoto, “Exceptional hierarchies of soliton equations”, Theta functions – Bowdoin 1987, part 1 (Brunswick, ME, 1987), Proc. Sympos. Pure Math., 49, Amer. Math. Soc., Providence, RI, 1989, 191–237 | DOI | MR

[21] H. Aratyn, E. Nissimov, S. Pacheva, A. H. Zimerman, Phys. Lett. B, 240 (1990), 127 | DOI | MR

[22] B. Feigin, B. Tsigan, Funct. Analys. Appl., 18 (1984), 94 | MR | Zbl

[23] A. Presley, G. Segal, Loop Groups, Clarendon Press, Oxford | MR

[24] V. G. Kac, Infinite dimensional Lie algebras, Birkhauser, Boston, 1983 | MR | Zbl

[25] M. I. Golenishcheva-Kutuzova, D. R. Lebedev, Soviet JETP Lett., 52 (1990), 1164

[26] I. B. Frenkel, N. Jing, Proc. Nat. Acad. Sci. USA, 85 (1988), 9373 | DOI | MR | Zbl

[27] M. Wakimoto, Commun. Math. Phys., 104 (1986), 604 | DOI | MR

[28] B. Feigin, E. Frenkel, Commun. Math. Phys., 128 (1990), 161 | DOI | MR | Zbl

[29] A. Gerasimov, A. Marshakov, A. Morozov, M. Olshanetsky, S. Shatashvili, Int. J. Mod. Phys. A, 5 (1990), 2495 | DOI | MR

[30] E. Witten, Commun. Math. Phys., 113 (1987), 529 | DOI | MR | Zbl

[31] J. Hoppe, M. Olshanetsky, S. Theisen, preprint KA-THEP-/91; Commun. Math. Phys., 155 (1993), 429 | DOI | MR | Zbl

[32] V. Zeitlin, Algebraization of $2-d$ ideal fluid hydradynamical systems and their finitemode approximations, preprint | MR

[33] M. Bordemann, J. Hoppe, P. Shaller, M. Schlichenmaier, Commun. Math. Phys., 138 (1991), 209 | DOI | MR | Zbl

[34] A. M. Polyakov, The theory of turbulence in two dimensions, preprint PUPT-1369 | MR