On the density in the grand canonical ensemble
Teoretičeskaâ i matematičeskaâ fizika, Tome 100 (1994) no. 1, pp. 44-58
Voir la notice de l'article provenant de la source Math-Net.Ru
The grand canonical ensemble of one-component systems of particles contained in a field $\Lambda$ is considered. It is proved thet if density (the first correlation function) approches the finite limit when the field $\Lambda$ tends to infinity in the sense of Fisher, then under contentedly common conditions this limit is represented by the function, thet under some conditions is the analytical continuation of Mayer`s expansion, representing the density as a function of the activity.
@article{TMF_1994_100_1_a4,
author = {G. I. Kalmykov},
title = {On the density in the grand canonical ensemble},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {44--58},
publisher = {mathdoc},
volume = {100},
number = {1},
year = {1994},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1994_100_1_a4/}
}
G. I. Kalmykov. On the density in the grand canonical ensemble. Teoretičeskaâ i matematičeskaâ fizika, Tome 100 (1994) no. 1, pp. 44-58. http://geodesic.mathdoc.fr/item/TMF_1994_100_1_a4/