Lattice $W$ algebras and quantum groups
Teoretičeskaâ i matematičeskaâ fizika, Tome 100 (1994) no. 1, pp. 132-147
Voir la notice de l'article provenant de la source Math-Net.Ru
We present Feigin's construction [Lectures given in Landau Institute] of lattice $W$ algebras and give some simple results: lattice Virasoro and $W_3$ algebras. For the simplest case $g=sl(2)$, we introduce the whole $U_q(sl(2))$ quantum group on this lattice. We find the simplest two-dimensional module as well as the exchange relations and define the lattice Virasoro algebra as the algebra of invariants of $U_q(sl(2))$. Another generalization is connected with the lattice integrals of motion as the invariants of the quantum affine group $U_q(\hat {n}_{+})$. We show that Volkov's scheme leads to a system of difference equations for a function of non-commutative variables.
@article{TMF_1994_100_1_a12,
author = {Ya. P. Pugay},
title = {Lattice $W$ algebras and quantum groups},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {132--147},
publisher = {mathdoc},
volume = {100},
number = {1},
year = {1994},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1994_100_1_a12/}
}
Ya. P. Pugay. Lattice $W$ algebras and quantum groups. Teoretičeskaâ i matematičeskaâ fizika, Tome 100 (1994) no. 1, pp. 132-147. http://geodesic.mathdoc.fr/item/TMF_1994_100_1_a12/