On a $c$-number quantum $\tau $-function
Teoretičeskaâ i matematičeskaâ fizika, Tome 100 (1994) no. 1, pp. 119-131

Voir la notice de l'article provenant de la source Math-Net.Ru

We first review the properties of the conventional $\tau$-functions of the KP and Toda-lattice hierarchies. A straightforward generalization is then discussed. It corresponds to passing from differential to finite-difference equations; it does not involve however the concept of operator-valued $\tau$-function nor the one associated with non-Cartanian (level $k\ne 1$) algebras. The present study could be useful to understand better $q$-free fields and their relation to ordinary free fields.
@article{TMF_1994_100_1_a11,
     author = {A. D. Mironov and A. Yu. Morozov and L. Vinet},
     title = {On a $c$-number quantum $\tau $-function},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {119--131},
     publisher = {mathdoc},
     volume = {100},
     number = {1},
     year = {1994},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1994_100_1_a11/}
}
TY  - JOUR
AU  - A. D. Mironov
AU  - A. Yu. Morozov
AU  - L. Vinet
TI  - On a $c$-number quantum $\tau $-function
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1994
SP  - 119
EP  - 131
VL  - 100
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1994_100_1_a11/
LA  - ru
ID  - TMF_1994_100_1_a11
ER  - 
%0 Journal Article
%A A. D. Mironov
%A A. Yu. Morozov
%A L. Vinet
%T On a $c$-number quantum $\tau $-function
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1994
%P 119-131
%V 100
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1994_100_1_a11/
%G ru
%F TMF_1994_100_1_a11
A. D. Mironov; A. Yu. Morozov; L. Vinet. On a $c$-number quantum $\tau $-function. Teoretičeskaâ i matematičeskaâ fizika, Tome 100 (1994) no. 1, pp. 119-131. http://geodesic.mathdoc.fr/item/TMF_1994_100_1_a11/