On a $c$-number quantum $\tau $-function
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 100 (1994) no. 1, pp. 119-131
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We first review the properties of the conventional $\tau$-functions of the KP and Toda-lattice hierarchies. A straightforward generalization is then discussed. It corresponds to passing from differential to finite-difference equations; it does not involve however the concept of operator-valued $\tau$-function nor the one associated with non-Cartanian (level $k\ne 1$) algebras. The present study could be useful to understand better $q$-free fields and their relation to ordinary free fields.
			
            
            
            
          
        
      @article{TMF_1994_100_1_a11,
     author = {A. D. Mironov and A. Yu. Morozov and L. Vinet},
     title = {On a $c$-number quantum $\tau $-function},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {119--131},
     publisher = {mathdoc},
     volume = {100},
     number = {1},
     year = {1994},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1994_100_1_a11/}
}
                      
                      
                    TY - JOUR AU - A. D. Mironov AU - A. Yu. Morozov AU - L. Vinet TI - On a $c$-number quantum $\tau $-function JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1994 SP - 119 EP - 131 VL - 100 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1994_100_1_a11/ LA - ru ID - TMF_1994_100_1_a11 ER -
A. D. Mironov; A. Yu. Morozov; L. Vinet. On a $c$-number quantum $\tau $-function. Teoretičeskaâ i matematičeskaâ fizika, Tome 100 (1994) no. 1, pp. 119-131. http://geodesic.mathdoc.fr/item/TMF_1994_100_1_a11/
