Exact solvable models of nonlinear dynamic systems driven by coloured Ornstein–Uhlenbeck and Rayleigh noises
Teoretičeskaâ i matematičeskaâ fizika, Tome 97 (1993) no. 3, pp. 396-413 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Exact solutions of the stationary Kolmogorov–Fokker–Planck equations corresponding to a certain class of nonlinear dynamical systems of first order driven parametrically (multiplicatively) by colored Markov Ornstein–Uhlenbeck and Rayleigh noise are obtained. The influence of asymmetric fluctuations on the form of the stationary distributions is discussed. Phase diagrams are constructed for some examples, and phase transitions induced by colored Rayleigh noise are noted.
@article{TMF_1993_97_3_a6,
     author = {A. F. Konstantinov and V. M. Loginov},
     title = {Exact solvable models of nonlinear dynamic systems driven by coloured {Ornstein{\textendash}Uhlenbeck} and {Rayleigh} noises},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {396--413},
     year = {1993},
     volume = {97},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1993_97_3_a6/}
}
TY  - JOUR
AU  - A. F. Konstantinov
AU  - V. M. Loginov
TI  - Exact solvable models of nonlinear dynamic systems driven by coloured Ornstein–Uhlenbeck and Rayleigh noises
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1993
SP  - 396
EP  - 413
VL  - 97
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1993_97_3_a6/
LA  - ru
ID  - TMF_1993_97_3_a6
ER  - 
%0 Journal Article
%A A. F. Konstantinov
%A V. M. Loginov
%T Exact solvable models of nonlinear dynamic systems driven by coloured Ornstein–Uhlenbeck and Rayleigh noises
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1993
%P 396-413
%V 97
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1993_97_3_a6/
%G ru
%F TMF_1993_97_3_a6
A. F. Konstantinov; V. M. Loginov. Exact solvable models of nonlinear dynamic systems driven by coloured Ornstein–Uhlenbeck and Rayleigh noises. Teoretičeskaâ i matematičeskaâ fizika, Tome 97 (1993) no. 3, pp. 396-413. http://geodesic.mathdoc.fr/item/TMF_1993_97_3_a6/

[1] Gardiner C. W., Stochastic Methods for Physics, Chemistry and Natural Sciences, Springer, Berlin, 1985 | MR

[2] Van Kampen N. G., Stokhasticheskie protsessy v fizike i khimii, Vysshaya shkola, M., 1990 | Zbl

[3] Khorstkhemke V., Lefevr R., Indutsirovannye shumom perekhody, Mir, M., 1987 | MR

[4] Polak L. S., Mikhailov A. S., Samoorganizatsiya v neravnovesnykh fiziko-khimicheskikh sistemakh, Nauka, M., 1983 | MR

[5] Luczka J., Physica A, 153A (1988), 619–635 | DOI | MR | Zbl

[6] Soldatov A. V., TMF, 85:2 (1990), 288–301 | MR

[7] Tikhonov V. I., Mironov M. A., Markovskie protsessy, Sov. Radio, M., 1977 | MR | Zbl

[8] Kamke E., Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1971 | MR

[9] Höngler M. O., Helv. Phys. Acta., 52 (1979), 280–284 | MR