Dynamical systems that admit normal displacement
Teoretičeskaâ i matematičeskaâ fizika, Tome 97 (1993) no. 3, pp. 386-395 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The classical geometrical construction of Bianchi–Lie, Bäcklund, and Darboux transformations is considered and generalized for dynamical systems. For a transformation that generalizes normal displacement, a class of dynamical systems that admit this transformation is found. A differential equation that distinguishes dynamical systems in $\mathbb R^2$ that belong to this class is derived, and some solutions of it are considered.
@article{TMF_1993_97_3_a5,
     author = {A. Yu. Boldin and R. A. Sharipov},
     title = {Dynamical systems that admit normal displacement},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {386--395},
     year = {1993},
     volume = {97},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1993_97_3_a5/}
}
TY  - JOUR
AU  - A. Yu. Boldin
AU  - R. A. Sharipov
TI  - Dynamical systems that admit normal displacement
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1993
SP  - 386
EP  - 395
VL  - 97
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1993_97_3_a5/
LA  - ru
ID  - TMF_1993_97_3_a5
ER  - 
%0 Journal Article
%A A. Yu. Boldin
%A R. A. Sharipov
%T Dynamical systems that admit normal displacement
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1993
%P 386-395
%V 97
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1993_97_3_a5/
%G ru
%F TMF_1993_97_3_a5
A. Yu. Boldin; R. A. Sharipov. Dynamical systems that admit normal displacement. Teoretičeskaâ i matematičeskaâ fizika, Tome 97 (1993) no. 3, pp. 386-395. http://geodesic.mathdoc.fr/item/TMF_1993_97_3_a5/

[1] Bianchi L., Ann. Scuola Norm. Pisa, 2 (1879), 285 | MR

[2] Lie S., Arch. Math. og Naturvidenskab, 5:3 (1880), 282, 328

[3] Backlund A. V., “Om ytor med kostant negativ krokning”, Lunds Universitets Arsskrift, 19 (1883)

[4] Darboux G., Lesons sur la theorie generate des surfaces, v. III, Gauthier-Villars et Fils, Paris, 1894 | MR | Zbl

[5] Ibragimov N. Kh., Gruppy preobrazovanii v matematicheskoi fizike, Nauka, M., 1983 | MR

[6] Olver P., Prilozhenie grupp Li k differentsialnym uravneniyam, Mir, M., 1989 | MR | Zbl

[7] Teneblat K., Terng C. L., Annals of Math., 111:3 (1980), 477–490 | DOI | MR

[8] Terng C. L., Annals of Math., 111:3 (1980), 491–510 | DOI | MR | Zbl

[9] Chern S. S., Terng C. L., Rocky Mount Journ. of Math., 10:1 (1980), 105 | DOI | MR | Zbl

[10] Bianchi L., Annali di Matem., 18:3 (1911), 185–243 | DOI | MR | Zbl

[11] Teneblat K., Bol. Soc. Bras. Math., 18:2 (1985), 67–92