Representation of the power-series expansion coefficients for the one-point correlation function in the grand canonical ensemble
Teoretičeskaâ i matematičeskaâ fizika, Tome 97 (1993) no. 3, pp. 452-458
Cet article a éte moissonné depuis la source Math-Net.Ru
A representation is found for the coefficients of the expansion of the one-point correlation function (the one-particle distribution density) in a series in powers of the activity that makes it possible to calculate, at least approximately, the first few coefficients of the expansion. The results can also be used to investigate problems of the thermodynamic limit in the grand canonical ensemble.
@article{TMF_1993_97_3_a10,
author = {G. I. Kalmykov},
title = {Representation of the power-series expansion coefficients for the one-point correlation function in the grand canonical ensemble},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {452--458},
year = {1993},
volume = {97},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1993_97_3_a10/}
}
TY - JOUR AU - G. I. Kalmykov TI - Representation of the power-series expansion coefficients for the one-point correlation function in the grand canonical ensemble JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1993 SP - 452 EP - 458 VL - 97 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_1993_97_3_a10/ LA - ru ID - TMF_1993_97_3_a10 ER -
%0 Journal Article %A G. I. Kalmykov %T Representation of the power-series expansion coefficients for the one-point correlation function in the grand canonical ensemble %J Teoretičeskaâ i matematičeskaâ fizika %D 1993 %P 452-458 %V 97 %N 3 %U http://geodesic.mathdoc.fr/item/TMF_1993_97_3_a10/ %G ru %F TMF_1993_97_3_a10
G. I. Kalmykov. Representation of the power-series expansion coefficients for the one-point correlation function in the grand canonical ensemble. Teoretičeskaâ i matematičeskaâ fizika, Tome 97 (1993) no. 3, pp. 452-458. http://geodesic.mathdoc.fr/item/TMF_1993_97_3_a10/
[1] Ryuel D., Statisticheskaya mekhanika. Strogie rezultaty, Mir, M., 1971
[2] Petrina D. Ya., Gerasimenko V. I., Malyshev P. V., Matematicheskie osnovy klassicheskoi statisticheskoi mekhaniki, Naukova dumka, Kiev, 1985 | MR | Zbl
[3] Kalmykov G. I., TMF, 84:2 (1990), 279–289 | MR
[4] Kalmykov G. I., Diskretnaya matematika, 4:2 (1992), 66–73 | MR | Zbl
[5] Kharari F., Teoriya grafov, Mir, M., 1973 | MR
[6] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, t. 2, Nauka, M., 1969