Representation of the power-series expansion coefficients for the one-point correlation function in the grand canonical ensemble
Teoretičeskaâ i matematičeskaâ fizika, Tome 97 (1993) no. 3, pp. 452-458

Voir la notice de l'article provenant de la source Math-Net.Ru

A representation is found for the coefficients of the expansion of the one-point correlation function (the one-particle distribution density) in a series in powers of the activity that makes it possible to calculate, at least approximately, the first few coefficients of the expansion. The results can also be used to investigate problems of the thermodynamic limit in the grand canonical ensemble.
@article{TMF_1993_97_3_a10,
     author = {G. I. Kalmykov},
     title = {Representation of the power-series expansion coefficients for the one-point correlation function in the grand canonical ensemble},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {452--458},
     publisher = {mathdoc},
     volume = {97},
     number = {3},
     year = {1993},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1993_97_3_a10/}
}
TY  - JOUR
AU  - G. I. Kalmykov
TI  - Representation of the power-series expansion coefficients for the one-point correlation function in the grand canonical ensemble
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1993
SP  - 452
EP  - 458
VL  - 97
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1993_97_3_a10/
LA  - ru
ID  - TMF_1993_97_3_a10
ER  - 
%0 Journal Article
%A G. I. Kalmykov
%T Representation of the power-series expansion coefficients for the one-point correlation function in the grand canonical ensemble
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1993
%P 452-458
%V 97
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1993_97_3_a10/
%G ru
%F TMF_1993_97_3_a10
G. I. Kalmykov. Representation of the power-series expansion coefficients for the one-point correlation function in the grand canonical ensemble. Teoretičeskaâ i matematičeskaâ fizika, Tome 97 (1993) no. 3, pp. 452-458. http://geodesic.mathdoc.fr/item/TMF_1993_97_3_a10/