Three algebraic structures of quantum projective ($\mathrm{sl}(2,\mathbb C)$-invariant) field theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 97 (1993) no. 3, pp. 336-347

Voir la notice de l'article provenant de la source Math-Net.Ru

Systematic studies are made of three algebraic structures of quantum projective ($\mathrm{sl}(2,\mathbb C)$-invariant) field theory: the operator algebra $\mathrm{Vert}(\mathrm{sl}(2,\mathbb C))$, the infinite dimensional $R$-matrix $R_{\mathrm{proj}}(u)$ and deformation $\mathcal T_\hbar(\mathbb R)$ of the algebra $\mathcal T(\mathbb R)$ of weighted-shift operators, which is associated with expansion of the renormalized pointwise product of vertex operator fields.
@article{TMF_1993_97_3_a1,
     author = {S. A. Bychkov and D. V. Yur'ev},
     title = {Three algebraic structures of quantum projective ($\mathrm{sl}(2,\mathbb C)$-invariant) field theory},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {336--347},
     publisher = {mathdoc},
     volume = {97},
     number = {3},
     year = {1993},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1993_97_3_a1/}
}
TY  - JOUR
AU  - S. A. Bychkov
AU  - D. V. Yur'ev
TI  - Three algebraic structures of quantum projective ($\mathrm{sl}(2,\mathbb C)$-invariant) field theory
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1993
SP  - 336
EP  - 347
VL  - 97
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1993_97_3_a1/
LA  - ru
ID  - TMF_1993_97_3_a1
ER  - 
%0 Journal Article
%A S. A. Bychkov
%A D. V. Yur'ev
%T Three algebraic structures of quantum projective ($\mathrm{sl}(2,\mathbb C)$-invariant) field theory
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1993
%P 336-347
%V 97
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1993_97_3_a1/
%G ru
%F TMF_1993_97_3_a1
S. A. Bychkov; D. V. Yur'ev. Three algebraic structures of quantum projective ($\mathrm{sl}(2,\mathbb C)$-invariant) field theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 97 (1993) no. 3, pp. 336-347. http://geodesic.mathdoc.fr/item/TMF_1993_97_3_a1/