Three algebraic structures of quantum projective ($\mathrm{sl}(2,\mathbb C)$-invariant) field theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 97 (1993) no. 3, pp. 336-347 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Systematic studies are made of three algebraic structures of quantum projective ($\mathrm{sl}(2,\mathbb C)$-invariant) field theory: the operator algebra $\mathrm{Vert}(\mathrm{sl}(2,\mathbb C))$, the infinite dimensional $R$-matrix $R_{\mathrm{proj}}(u)$ and deformation $\mathcal T_\hbar(\mathbb R)$ of the algebra $\mathcal T(\mathbb R)$ of weighted-shift operators, which is associated with expansion of the renormalized pointwise product of vertex operator fields.
@article{TMF_1993_97_3_a1,
     author = {S. A. Bychkov and D. V. Yur'ev},
     title = {Three algebraic structures of quantum projective ($\mathrm{sl}(2,\mathbb C)$-invariant) field theory},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {336--347},
     year = {1993},
     volume = {97},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1993_97_3_a1/}
}
TY  - JOUR
AU  - S. A. Bychkov
AU  - D. V. Yur'ev
TI  - Three algebraic structures of quantum projective ($\mathrm{sl}(2,\mathbb C)$-invariant) field theory
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1993
SP  - 336
EP  - 347
VL  - 97
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1993_97_3_a1/
LA  - ru
ID  - TMF_1993_97_3_a1
ER  - 
%0 Journal Article
%A S. A. Bychkov
%A D. V. Yur'ev
%T Three algebraic structures of quantum projective ($\mathrm{sl}(2,\mathbb C)$-invariant) field theory
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1993
%P 336-347
%V 97
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1993_97_3_a1/
%G ru
%F TMF_1993_97_3_a1
S. A. Bychkov; D. V. Yur'ev. Three algebraic structures of quantum projective ($\mathrm{sl}(2,\mathbb C)$-invariant) field theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 97 (1993) no. 3, pp. 336-347. http://geodesic.mathdoc.fr/item/TMF_1993_97_3_a1/

[1] Yurev D. V., Algebra i analiz, 2:2 (1990), 209–226 ; 3:3 (1991), 197–205 ; ТМФ, 86:1 (1991), 338–343 ; УМН, 46:4 (1991), 115–138 | MR | Zbl | MR | MR | Zbl | MR

[2] Maslov V. P., Operatornye metody, Nauka, M., 1973 ; Карасев М. В., Маслов В. П., “Сводка формул некоммутативного анализа”, приложение 1 к книге, Нелинейные скобки Пуассона. Геометрия и квантование, Наука, М., 1991 | MR | MR | Zbl

[3] Frenkel I., Lepowsky J., Meurman A., Vertex operator algebras and the Monster, Acad. Press, New York, 1987 ; Goddard P., Meromorphic conformal field theory. Infinite dimensional Lie algebras and Lie groups, World Scientific, Singapore, 1989 | MR | MR

[4] Sklyanin E. K., Faddeev L. D., DAN SSSR, 243:6 (1978), 1430–1433 ; Склянин Е. К., Тахтаджян Л. А., Фаддеев Л. Д., ТМФ, 40 (1979), 194–220 | MR

[5] Kapacev M. V., Maslov V. P., Nazaikinskii V. E., Sovr. probl. matem. Noveishie dostizheniya, 13, VINITI, M., 1979

[6] Reshetikhin N. Yu., Takhtadzhyan L. A., Faddeev L. D., Algebra i anal., 1:1 (1989), 178–206 | MR

[7] Yurev D. V., TMF, 93:1 (1992), 32–35 | MR

[8] Abe E., Hopf algebras, Cambridge Univ.Press, Cambridge, 1982 ; Drinfeld V. G., Proc. Intern. Congr. Math. Berkeley, 1, Acad. Press, California, 1986, 798–820 | MR | Zbl

[9] Kirillov A. A., Sovrem. probl. matematiki. Fundamentalnye napravleniya, 4, VINITI, M., 1985, 141–176 | MR

[10] Nikiforov A. F., Suslov S. K., Uvarov V. B., Klassicheskie ortogonalnye polinomy diskretnoi peremennoi, Nauka, M., 1985 ; Суслов С. К., УМН, 44:2 (1989), 185–226 ; Гельфанд И. М., Граев М. И., Ретах B. C., УМН, 47:4 (1992) | MR | MR | MR | Zbl

[11] Perelomov A. M., Obobschennye kogerentnye sostoyaniya i ikh primeneniya, Nauka, M., 1987 | MR