Direct proof of energy conservation for automorphic wave equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 97 (1993) no. 2, pp. 247-249

Voir la notice de l'article provenant de la source Math-Net.Ru

The resonances in the problem of scattering on the fundamental domain of the modular group are related to the zeros of Riemann's $\zeta$ function on the critical line [1]. Therefore, the rate of decrease of the energy in the solution given by the Eisenstein series on the translationally invariant subspace is determined by the position of the zeros of the $\zeta$ function. Decrease of the energy can be expected only if there is mutual compensation of the terms of the series [2]. The question of corresponding compensations in the simpler situation in the complete space is therefore of interest.
@article{TMF_1993_97_2_a6,
     author = {A. M. Khodakovskii},
     title = {Direct proof of energy conservation for automorphic wave equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {247--249},
     publisher = {mathdoc},
     volume = {97},
     number = {2},
     year = {1993},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1993_97_2_a6/}
}
TY  - JOUR
AU  - A. M. Khodakovskii
TI  - Direct proof of energy conservation for automorphic wave equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1993
SP  - 247
EP  - 249
VL  - 97
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1993_97_2_a6/
LA  - ru
ID  - TMF_1993_97_2_a6
ER  - 
%0 Journal Article
%A A. M. Khodakovskii
%T Direct proof of energy conservation for automorphic wave equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1993
%P 247-249
%V 97
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1993_97_2_a6/
%G ru
%F TMF_1993_97_2_a6
A. M. Khodakovskii. Direct proof of energy conservation for automorphic wave equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 97 (1993) no. 2, pp. 247-249. http://geodesic.mathdoc.fr/item/TMF_1993_97_2_a6/