Nonlinear evolution equations with (1,1)-supersymmetric time
Teoretičeskaâ i matematičeskaâ fizika, Tome 97 (1993) no. 2, pp. 238-246 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A generalization of the Cauchy–Kowalewsky theorem is obtained for nonlinear evolution equations with (1,1)-supersymmetric time. This theorem ensures the existence and uniqueness of a solution for a large class of superanalytic functions. A generalization of Cartan's technique to the supersymmetric case is also obtained, and by means of it the problem of integrating a system of partial differential equations is transformed into the problem of finding a sequence of integral supermanifolds of lower dimension by means of a succession of integrations based on the Cauchy–Kowalewsky theorem. Evolution equations with (1, 1) time are important for applications to supersymmetric quantum mechanics and field theory, namely, square roots of the Schrödinger and heat-conduction equations. We consider nonlinear generalizations of such equations.
@article{TMF_1993_97_2_a5,
     author = {A. Yu. Khrennikov and R. Cianci},
     title = {Nonlinear evolution equations with~(1,1)-supersymmetric time},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {238--246},
     year = {1993},
     volume = {97},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1993_97_2_a5/}
}
TY  - JOUR
AU  - A. Yu. Khrennikov
AU  - R. Cianci
TI  - Nonlinear evolution equations with (1,1)-supersymmetric time
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1993
SP  - 238
EP  - 246
VL  - 97
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1993_97_2_a5/
LA  - ru
ID  - TMF_1993_97_2_a5
ER  - 
%0 Journal Article
%A A. Yu. Khrennikov
%A R. Cianci
%T Nonlinear evolution equations with (1,1)-supersymmetric time
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1993
%P 238-246
%V 97
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1993_97_2_a5/
%G ru
%F TMF_1993_97_2_a5
A. Yu. Khrennikov; R. Cianci. Nonlinear evolution equations with (1,1)-supersymmetric time. Teoretičeskaâ i matematičeskaâ fizika, Tome 97 (1993) no. 2, pp. 238-246. http://geodesic.mathdoc.fr/item/TMF_1993_97_2_a5/

[1] De Witt B., Supermanifolds, Cambridge University Press., London, 1984 | MR | Zbl

[2] Rogers A., J. Math. Phys., 21 (1980), 1352–1362 ; 22 (1981), 939–949 | DOI | MR | DOI | MR

[3] Jadczyk A., Pilch K., Commun. Math. Phys., 78 (1981), 373–386 | DOI | MR

[4] Vladimirov B. C., Volovich I. V., TMF, 59:1 (1984), 3–27 ; 60:2, 169–198 | MR | Zbl | MR | Zbl

[5] Khrennikov A. Yu., UMN, 43:2 (1988), 87–114 | MR | Zbl

[6] Cianci R., Introduction to Supermanifolds, Bibliopolis, Napoli, 1990 ; J. Math. Phys., 29 (1988), 2156–2160 | MR | Zbl | DOI | MR

[7] Bruzzo U., Bartocci C., Hernàndez Ruipèrez D., The geometry of Supermanifolds, Kluwer Acad. Publ., 1991 | MR | Zbl

[8] Martin I. L., Proc. Roy. Soc. London. A, 251 (1959), 536–550 ; Березин Ф. А., Введение в алгебру и анализ с антикоммутирующими переменными, МГУ, М., 1980 | DOI | MR | MR

[9] Khrennikov A. Yu., TMF, 73:3 (1987), 420–429 ; Дифф. уравнения, 24:12 (1988), 2144–2157 ; 25:3 (1989), 505–514 ; Матем. сб., 180:6 (1989), 763–786 ; Изв. АН СССР. Сер. матем., 54:3 (1990), 576–606 | MR | MR | MR | Zbl | MR

[10] Friedan D., Windey P., Nucl. Phys. B, 235 (1984), 395–406 | DOI | MR

[11] Rogers A., “Stochastic calculus in superspace and supersymmetric hamiltonians”, Diff. Geom. Methods in Theor. Phys., Springer-Verlag, Berlin, 1991, 255–259 | DOI | MR

[12] Ktitarev D. V., Lett. Math. Phys., 20 (1990), 309–314 | DOI | MR

[13] Cartan E., Les System Differentiels Exterieurs et leurs Applications Geometriques, Hermann, Paris, 1975 | MR

[14] Cianci R., Khrennikov A. Yu., Differential equations with supersymmetric time, preprint No 207, Dip. di Mat., Univ. di Genova, 1992 | MR

[15] Ivaschuk V. D., TMF, 79:1 (1989), 31–40